[pt] Atualmente a metodologia correspondente ao estado da arte utilizada
para o planejamento de médio-/longo-prazo da operação de sistemas elétricos
de potência é a Programação Dual Dinâmica Estocástica (PDDE). No entanto,
a tratabilidade computacional proporcionada por este método ainda
requer simplificaçõeses consideráveis de detalhes de sistemas reais de maneira a
atingir performaces aceitáveis em aplicações práticas. Simplificações feitas no
estágio de planejamento em contraste com a implementação das decisões podem
induzir políticas temporalmente inconsistentes e, consequentemente, um
gap de sub-otimalidade. Inconsisência temporal em planejamento hidrotérmico
pode ser induzida, por exemplo, ao assumir um coeficiente de produtividade
constante para as hidrelétricas, ao agregar os reservatórios, ao negligenciar a segunda
lei de Kirchhoff e neglienciando-se critérios de segurança em modelos de
planejamento. As mesmas restrições são posteriormente consideradas na etapa
de implementação do sistema. Esse fato pode estar envolvido com esvaziamento
não planejado de reservatórios e entregabilidade inadequada de reservas girantes.
Ambos podem levar a altos custos operacionais. Além disso, o sistema pode
ficar exposto a um risco sistêmico de racionamento e em última instâcia, blackouts. O gap de sub-otimalidade pode também levar a distorções em mercados
de energia. Assim, é razoável que as consequências da inconstência temporal
em sistemas hidrotérmicos sejam estudadas. Nesse sentido, este trabalho
propõe uma extensão de trabalhos já realizados relacionados à inconsistência
temporal para medir os efeitos de simplificações de modelagem em modelos
de planejamento resolvidos pela PDDE. A abordagem proposta consiste em
usar um modelo simplificado para o planejamento do sistema, que é feito pela
avaliação da função de recurso, e um modelo detalhado para a sua operação.
Estudos de caso envolvendo simplificações em modelagem de linhas de transmissão e critérios de segurança são realizados. No entanto, o foco deste trabalho
se dará na segunda fonte, já que a mesma apresenta maior complexidade na
caracterização do efeito. No entanto, a incorporação de critérios de segurança
é um grande desafio para operadores de sistemas elétricos, pois o tamanho
do modelo tende a crescer exponencialmente quando critérios de segurança
reforçados são aplicados. Motivado por isso, o principal objetivo deste trabalho
é propor uma nova abordagem ao problema que permite que critérios de
segurança possam ser incorporados em modelos de planejamento e consequentemente
garantir a entregabilidade de reservas em políticas de planejamento.
A formulação do problema é uma extensão multiperiodo e estocástica the modelos
de Otimização Robusta Ajustável que já foram propostos na literatura
para resolver o problema relacionado à dimensionalidade para um período. A
metodologia de solução involve um algoritmo híbrido Robusto-PDDE que por
meio do compartilhamento de estados de contingência ativos entre os períodos
e cenários de afluência é capaz de atingir tratabilidade computacional. Com a
nova abordagem proposta, é possível (i) resolver o problema de agendamento
ótimo das reservas em sistemas hidrotérmicos garantindo a entregabilidade das
reservas em um critério n - K e (ii) calcular o custo e os efeitos negativos de
se negligenciar critérios de segurança no planejamento. / [en] The current state of the art method used for medium/long-term planning studies of hydrothermal power system operation is the Stochastic Dual Dynamic Programming (SDDP) algorithm. The computational savings provided by this method notwithstanding, it still relies on major system simplifications to achieve acceptable performances in practical applications. Simplifications in the planning stage in contrast to the actual implementation might induce time inconsistent policies and, consequently, a sub-optimality gap. Time inconsistency in hydrothermal planning might be induced by, for instance, assuming a constant coefficient production for hydro plants, reservoir aggregation, neglecting Kirchhoff s voltage law, and neglecting security criteria in planning models, which are then incorporated in implementating models. Unaccounted for reservoir depletion and inadequate spinning reserve deliverability situations that were observed in the Brazilian power system might be induced by time inconsistency. And this can lead to higher operational costs. Both these consequences are utterly negative since they pose the system to a great systemic risk of energy rationing or ultimately, system blackouts. In addition, the suboptimility gap may also lead to energy markets distortions. Hence, it seems reasonable that further investigations on consequences of time inconsistency in hydrothermal planning should be undertaken. Along these lines, this work proposes an extension to previous work on the subject of time inconsistency to measure the effects of modeling simplifications in the SDDP framework for hydrothermal operation planning. The approach consists of using a simplified model for planning the system, which is done by means of the assessment of the recourse (cost-to-go) function, and a detailed model for its operation (implementation of the policy). Case studies involving simplifications in transmission lines modeling and in security criteria are carried out. Nevertheless, the focus of this work is on the later source as it is more difficult to address due to the complexity involved in the characterization of this effect. However, incorporating security criteria in planning models poses a major challenge to system operators. This is because the size of the model tends to grow exponentially as tighter security criteria are adopted. Motivated by this, the main objective of this work is to propose a new framework that allows security criteria to be incorporated in planning models and consequently ensure reserve deliverability in planning policies. The problem formulation is a multiperiod stochastic extension of Adjustable Robust Optimization (ARO) based models already proposed in literature to successfully address the dimensionality issue regarding the incorporation of security criteria n - K and its variants. The solution methodology involves a hybrid Robust-SDDP algorithm that by means of sharing active contingency states amongst periods and possible inflow scenarios in the SDDP algorithm is capable of achieving computational tractability. Then, with the proposed approach it is possible to (i) address the optimal scheduling of energy and reserve in hydrothermal power systems ensuring reserve deliverability under an n - K security criterion and (ii) assess the cost and side effects of disregarding security criteria in the planning stage.
Identifer | oai:union.ndltd.org:puc-rio.br/oai:MAXWELL.puc-rio.br:27876 |
Date | 03 November 2016 |
Creators | ARTHUR DE CASTRO BRIGATTO |
Contributors | ALEXANDRE STREET DE AGUIAR |
Publisher | MAXWELL |
Source Sets | PUC Rio |
Language | English |
Detected Language | Portuguese |
Type | TEXTO |
Page generated in 0.0094 seconds