Return to search

Analyses et preuves formelles d'algorithmes distribués probabilistes / Analyses and Formal Proofs of Randomised Distributed Algorithms

L’intérêt porté aux algorithmes probabilistes est, entre autres,dû à leur simplicité. Cependant, leur analyse peut devenir très complexeet ce particulièrement dans le domaine du distribué. Nous mettons en évidencedes algorithmes, optimaux en terme de complexité en bits résolvantles problèmes du MIS et du couplage maximal dans les anneaux, qui suiventle même schéma. Nous élaborons une méthode qui unifie les résultatsde bornes inférieures pour la complexité en bits pour les problèmes duMIS, du couplage maximal et de la coloration. La complexité de ces analysespouvant facilement mener à l’erreur et l’existence de nombreux modèlesdépendant d’hypothèses implicites nous ont motivés à modéliserde façon formelle les algorithmes distribués probabilistes correspondant ànotre modèle (par passage de messages, anonyme et synchrone), en vuede prouver formellement des propriétés relatives à leur analyse. Pour cela,nous développons une bibliothèque, RDA, basée sur l’assistant de preuveCoq. / Probabilistic algorithms are simple to formulate. However, theiranalysis can become very complex, especially in the field of distributedcomputing. We present algorithms - optimal in terms of bit complexityand solving the problems of MIS and maximal matching in rings - that followthe same scheme.We develop a method that unifies the bit complexitylower bound results to solve MIS, maximal matching and coloration problems.The complexity of these analyses, which can easily lead to errors,together with the existence of many models depending on implicit assumptionsmotivated us to formally model the probabilistic distributed algorithmscorresponding to our model (message passing, anonymous andsynchronous). Our aim is to formally prove the properties related to theiranalysis. For this purpose, we develop a library, called RDA, based on theCoq proof assistant.

Identiferoai:union.ndltd.org:theses.fr/2014BORD0091
Date16 June 2014
CreatorsFontaine, Allyx
ContributorsBordeaux, Zemmari, Akka, Castéran, Pierre
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0021 seconds