Return to search

Modélisation et imagerie d'atténuation dans les milieux biologiques

La thèse est consacrée à l'étude des problèmes inverses liés à la localisation des sources acoustiques et élastiques dans des milieux atténués à partir de mesures à la frontière, et de leurs applications à l'imagerie médicale. Nous présentons des algorithmes efficaces et stables pour compenser les effets d'atténuation sur la résolution d'image. Nous développons des algorithmes basés sur la transformée de Radon pour récupérer la distribution de pression initiale dans les milieux atténués, avec et sans conditions aux limites imposées. Nous appliquons le théorème de phase stationnaire à un opérateur d'atténuation mal conditionné pour corriger l'effet d'atténuation et nous utilisons des méthodes de régularisation TV-Tikhonov pour traiter les problèmes de mesure partielle. Nous revisitons les méthodes de retournement temporel pour les milieux idéaux (sans perte d'énergie) et nous les étendons aux milieux atténuées. Comme des ondes atténuées ne sont pas réversibles en temps, nous utilisons la stratégie de back-propagation des approximations régulières des ondes adjointes atténuées pour reconstituer les sources de façon stable avec une correction d'atténuation d'ordre 1. Pour les milieux acoustiques, nous présentons une stratégie alternative basée sur un pré-traitement des données pour les corrections d'ordre supérieur. Aux milieux élastiques, les données consistent en des ondes de cisaillement et des pressions couplées. Nous proposons une approche originale basée sur la décomposition de Helmholtz avec des poids. En outre, nous introduisons des algorithmes efficaces d'imagerie avec des poids pour localiser les sources de bruit acoustique par des techniques de cross-corrélation et en utilisant une version régularisée de back-propagateurs pour corriger l'atténuation. Nous avons également localisé les sources de bruit spatialement corrélées, et nous estimons la matrice de corrélation entre eux. Afin d'étendre les algorithmes de détection d'anomalies élastiques aux milieux visco-élastiques, nous dérivons une expression de la fonction de Green visco-élastique isotrope. Ensuite, nous proposons une technique de correction d'atténuation pour un milieu quasi-incompressible et prouver que l'on peut accéder à la fonction de Green idéale (non visqueux) à partir de la fonction de Green visco-élastique en inversant un opérateur différentiel ordinaire. Enfin, nous fournissons quelques fonctions de Green visco-élastiques anisotropes, dans le but d'étendre nos résultats aux milieux anisotropes.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00674109
Date25 November 2011
CreatorsWahab, Abdul
PublisherEcole Polytechnique X
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0021 seconds