Eutectoid steel strips are designed for the production of parts for intensive use such as clutches, seat slides, and springs as they exhibit<p>excellent strength levels and wear resistance. These properties arise from the unique morphology of lamellar pearlite which can be considered<p>as a self-laminated nanoscale composite. However, a spheroidization annealing step is nowadays necessary to improve the cold forming properties before further cold rolling steps.<p>This thesis is aimed at improving the tensile ductility of the hot rolled products of eutectoid composition in order to eliminate the intermediate<p>annealing step. Two strategies are proposed.<p>The first is to transpose the concept of controlled rolling developed for HSLA to<p>eutectoid steels. Through a strict adjustment of the austenite processing and of the cooling strategy, it is possible to improve the ductility<p>of the final lamellar microstructure. The way the processing parameters influence the hot deformation of austenite, the eutectoid transformation and of the subsequent spheroidization annealing is deeply<p>investigated. It is found that refinement and pancaking of austenite<p>is beneficial as it reduces the pearlite block size improving the total<p>tensile elongation. Accelerated cooling is of paramount importance to<p>achieve fine Interlamellar spacing (ILS), which lead to high strength<p>levels and accelerate spheroidization during subsequent annealing.<p>The second approach involves intercritical or warm deformation. Warm processing of eutectoid steels is first explored by torsion testing<p>and then up-scaled to a pilot rolling-line. The interactions between thermomechanical parameters, rolling forces generated and microstructural<p>evolution are carefully scrutinized. During concurrent hot deformation, spheroidization of cementite takes place almost instantaneously<p>in both torsion and rolling. The restoration processes occurring in the ferrite matrix depends on the strain path and the strain rates. Low strain rates (0,1 s−1) and simple shear promotes the formation of a recrystallized-like HABs network of about 3μm in size.<p>Plane strain compression and high strain rates (10 s−1) leads to the formation of a typical recovered dislocation substructure (LABs) of 1μm in size. During annealing, no recrystallization occurs and the LABs substructure remains stable. This substructure influences drammatically the mechanical properties: the strength is very high and the work-hardening behavior is poor due to high recovery rate in the region close to the LABs. However, due to the presence of spheroidized<p>cementite particles the ductility of warm rolled eutectoid steels is higher than that of ultra fine grained low carbon steels. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
Identifer | oai:union.ndltd.org:ulb.ac.be/oai:dipot.ulb.ac.be:2013/209371 |
Date | 30 October 2013 |
Creators | Caruso, Matteo |
Contributors | Godet, Stéphane, Delplancke, Marie-Paule, Barnett, Matthew, Jacques, Pascal, Schmitz, Alain, Delaunois, Fabienne, Segers, Luc |
Publisher | Universite Libre de Bruxelles, Université libre de Bruxelles, Ecole polytechnique de Bruxelles – Chimie et Science des Matériaux, Bruxelles |
Source Sets | Université libre de Bruxelles |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis, info:ulb-repo/semantics/doctoralThesis, info:ulb-repo/semantics/openurl/vlink-dissertation |
Format | No full-text files |
Page generated in 0.0027 seconds