CoordenaÃÃo de AperfeÃoamento de Pessoal de NÃvel Superior / Este trabalho trata das propriedades e aplicaÃÃes dos determinantes reconhecendo-os como uma ferramenta importante para sintetizar a representaÃÃo e o cÃlculo de algumas funÃÃes e equaÃÃes na Ãrea de geometria analÃtica e Ãlgebra linear. Nos primeiros capÃtulos apresentam-se um pouco da histÃria dos determinantes, os matemÃticos que contribuÃram na sua evoluÃÃo e a necessidade que gerou o inÃcio do seu estudo. Prossegue-se entÃo, a definiÃÃo de determinante e o cÃlculo dos determinantes a partir do teorema de Laplace via recorrÃncia, bem como o dispositivo prÃtico de Sarrus para determinante de terceira ordem. No capÃtulo seguinte, sÃo apresentadas as propriedades, num total de doze, com suas demonstraÃÃes e exemplos, pois elas serÃo utilizadas nas aplicaÃÃes dos determinantes. Logo apÃs, apresenta-se uma sÃrie de aplicaÃÃes na Ãrea de Ãlgebra linear, por exemplo: dependÃncia e independÃncia linear, matriz inversa, soluÃÃo de sistemas lineares (Regra de Cramer) e produto vetorial; alÃm de aplicaÃÃes na Ãrea de geometria analÃtica, tais como: condiÃÃo de alinhamento de trÃs pontos, Ãrea do paralelogramo e volume do paralelepÃpedo. Por fim, conclui-se que à fundamental o professor da segunda sÃrie do ensino mÃdio abordar em suas aulas um pouco da histÃria, chamando a atenÃÃo dos alunos para os matemÃticos que se destacaram neste estudo; expor as aplicaÃÃes dos determinantes, despertando a curiosidade de seus alunos e o interesse pela Ãrea de Ãlgebra linear ou geometria analÃtica. / This paper deals with the properties and applications of determinants recognizing them as an important tool to synthesize the representation and calculation of some functions and equations in the field of analytical geometry and linear algebra. In the first chapters we present some of the history of determinants, the mathematicians who contributed in its evolution and the need that generated the beginning of their study. Then we proceed, the definition of determining and calculating the determinants from the theorem of Laplace via recurrence as well as the handy device for determining Sarrus third order. In the next chapter, we present the properties, a total of twelve, with their statements and examples, as they will be used in applications of determinants. Soon after, it presents a number of applications in linear algebra, eg, linear dependence and independence, inverse matrix, solution of linear systems (Cramer's Rule) and cross product; addition to applications in analytical geometry, such as alignment condition of three points of the parallelogram area and volume of the parallelepiped. Finally, it is concluded that it is essential the teacher of the second grade of high school address in their classes a little history, calling students' attention to mathematicians who have excelled in this study; expose the applications of determinants, arousing the curiosity of their students and interest in the area of linear algebra and analytic geometry.
Identifer | oai:union.ndltd.org:IBICT/oai:www.teses.ufc.br:8479 |
Date | 03 May 2014 |
Creators | Daniel Rodrigues Marques |
Contributors | Marcos Ferreira de Melo, Marcelo Ferreira de Melo, Francisco Regis Vieira Alves |
Publisher | Universidade Federal do CearÃ, Programa de PÃs-GraduaÃÃo em MatemÃtica em Rede Nacional (PROFMAT), UFC, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFC, instname:Universidade Federal do Ceará, instacron:UFC |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0021 seconds