Les protéines de choc thermique (HSP) jouent un rôle crucial dans le maintien de l’intégrité du protéome et le contrôle de qualité des protéines. BCL-2-associated athanogene 3 (BAG3) est un co-chaperon moléculaire particulier qui peut s’associer avec différents systèmes d’HSPs : les chaperons HSPA (HSC/HSP70) et HSPB, en particulier HSPB8. Bien que l’implication des HSPA dans les fonctions de BAG3 associées au contrôle de qualité soit caractérisée, le rôle d’HSPB8 demeure incompris. Ainsi l’objectif de cette thèse est de préciser l’implication d’HSPB8 dans le contexte du stress protéotoxique engendré par l’inhibition du protéasome qui conduit à la séquestration des protéines polyubiquitinées à l’agrésome et à leur dégradation par autophagie. Nous avons mis en évidence un rôle précoce d’HSPB8 dans la séquestration des protéines ubiquitinées, qui ne semble pas requérir sa liaison à BAG3 mais qui potentialiserait la formation de l’agrésome. Nos résultats suggèrent qu’HSPB8 favorise des modifications post-traductionnelles sur p62/SQSTM1, dont la phosphorylation sur la sérine 349, et son couplage au co-chaperon BAG3. Cela faciliterait la formation de micro-agrégats cytoplasmiques et de l’agrésome ainsi que l’activation de la voie de signalisation protectrice Nrf2 suite à la séquestration de la protéine adaptatrice Keap1. De plus, nous avons mis en évidence une déstabilisation des interactions entre BAG3, HSPB8 et p62/SQSTM1 avec le mutant BAG3 (P209L) dont la mutation est localisée sur un des motifs de liaison à HSPB8. L’expression de ce mutant s’accompagne d’une diminution de l’activation de la voie Nrf2 en réponse au stress qui pourrait contribuer au mécanisme pathologique dans les myopathies associées à cette mutation. Enfin, une analyse dynamique de la disparition de l’agrésome suggère que son élimination requiert une étape de désagrégation qui serait suivie par sa dégradation par voie autophagique. Nous avons montré un rôle de BAG3 dans la disparition de cette structure suggérant que le co-chaperon agit via sa fonction dans l’autophagie. En revanche, HSPB8 ne semble pas participer pas à cette activité de dégradation de l’agrésome, et pourrait au contraire l’inhiber. Ainsi, cette étude met en évidence un nouveau rôle d’HSPB8 dans la séquestration précoce de protéines dénaturées, grâce à laquelle HSPB8 pourrait participer à la formation d’une plateforme facilitant la signalisation aux voies de stress. HSPB8 coopère avec BAG3 au ciblage des protéines dénaturées à l’agrésome, en vue de leur dégradation par autophagie, en favorisant notamment le couplage de BAG3 à un de ses partenaires clé, l’adaptateur autophagique p62/SQSTM1. De plus, le complexe HSPB8-BAG3 prend part à l’activation de voies de signalisation protectrice en réponse au stress ce qui pourrait avoir des implications dans les maladies musculaires associées aux mutations de BAG3 ainsi que dans le contexte du cancer. / Heat shock protein (HSP) play crucial role in the maintenance of the proteome integrity and in protein quality control. BCL-2-associated athanogene 3 (BAG3) is a unique co-chaperone that interacts with different systems of chaperones, including the HSPA (HSC/HSP70) and HSPB families, in particular HSPB8. While the role of HSPA chaperones in BAG3-related functions in protein quality control has been well characterized, the exact contribution of HSPB8 remains incompletely understood. The objective of this thesis is to characterize HSPB8 function in BAG3-related activities in the context of cellular stress in response to proteasome inhibition, which lead to the sequestration of polyubiquitinated protein in a quality control deposit through the aggresome-autophagy pathway and in which BAG3 has previously been involved. Here we have discovered an early function of HSPB8 in response to stress that contributes to the controlled aggregation of polyubiquitinated proteins in a BAG3-independent manner, but that would facilitate efficient targeting of polyubiquitinated protein aggregates to the aggresome, which is BAG3-dependent. Our results suggest that HSPB8 functions in part, by modulating p62/SQSTM1 molecular assemblies and facilitating their coupling to BAG3. This, in turn, would promote microaggregate and aggresome formation and signaling to an important arm of the oxidative defense regulated by Nrf2. Besides, a BAG3 (P209L) mutant, located within an HSPB8-binding motif, appears to disturb the association between BAG3 and p62/SQSTM1, leading to down-modulation of stress-induced Nrf2 activation, a process that could contribute to the development of severe myofibrillar myopathies. Moreover, analyses of the dynamic of aggresome clearance during the recovery period suggest that it involves a first step of disaggregation followed by its catabolic degradation. We found that while BAG3 would contribute to aggresome clearance by a mechanism involving its autophagic function, HSPB8 appeared not to be involved and could rather slow down the process. In conclusion, this thesis highlight a novel role for HSPB8 in the spatial sequestration of harmful proteins, which could provide a platform to cross talk with stress signaling pathways. HSPB8 would uniquely cooperate with BAG3 in the targeting of microaggregates to the aggresome-autophagy pathway, in part, by favoring the coupling of BAG3 to the stress sensor p62/SQSTM1. Furthermore, this work has uncovered a novel role for the HSPB8-BAG3 chaperone complex in mounting of an efficient stress response, which may have implications in BAG3-related diseases, including myofibrillar myopathy and cancer.
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/28128 |
Date | 24 April 2018 |
Creators | Guilbert, Solenn |
Contributors | Lavoie, Josée |
Source Sets | Université Laval |
Language | French |
Detected Language | French |
Type | thèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat |
Format | 1 ressource en ligne (xx, 259 pages), application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.0042 seconds