Return to search

Implementation av portabla REM-identifierande sensorer : Undersökning kring lämpliga, icke-påträngande metoder för REM-igenkänning

Trötthet i trafiken är ett stort problem i samhället. Det är särskilt farligt att trött framföra tunga lastbilar i trafiken eftersom dessa fordon är stora och har ofta livsavgörande roller vid inblandning i trafikolyckor. För att angripa problemet har det i denna rapport studerats kring vilket sömnstadie som är lämpligast att vakna under, i syfte att vakna pigg och alert samt vilka typer av tekniker och metoder som är lämpliga för att portabelt kunna detektera Rapid-Eye-Movement. Tidigare arbeten och studier har gjorts som påvisar att uppväckning i REM-sömn är optimalt för att känna sig alert. De valda metoderna är baserade på varianter av väletablerade tekniker som används för identifiering av sömnsteg. Elektrookulografi används för att mäta ögonrörelser med hjälp av fyra elektroder som är placerade på huvudet. Kroppsrörelser upptäcks genom en accelerometer som fästs på armen. Pulsmätningar görs och används för att räkna ut pulsvariansen under sömnen. Målet är att skapa en prototyp som ska känna av när användaren är i REM-sömn och sedan väcka användaren. Detta arbete är uppdelat i två inbyggda system som görs mellan två olika examensarbeten. Resultatet blev tre sensorer som fungerar individuellt. På grund av tidsbrist och en längre felsökning blev prototypen inte färdigställd. Innan sensorerna kan tillämpas i en produkt krävs det att ytterligare tester genomförs under monitorering av en sömnspecialist. / Tiredness in traffic is a major problem in society. It is especially dangerous to drive heavy trucks when tired because these vehicles are large and often have vital roles when involved in traffic accidents. To address the problem, this degree project has studied which sleep stage is most appropriate to wake up during, in order to wake up sharp and alert, and what types of techniques and methods are suitable for portable detection of Rapid-Eye-Movement. Previous work and studies have been done which indicates that awakening during REM sleep is optimal for feeling alert. The chosen methods are based on variants of well-established techniques that are used to identify sleep stages. Electrooculography is used to measure eye movements using four electrodes placed on the head. Body movements are detected by an accelerometer attached to the arm. Pulse measurements are made and used to calculate the pulse variation during sleep. The goal is to create a prototype which will know when the user is in REM sleep and then wake the user up. This work is divided into two embedded systems that are made between two different degree projects. The result was three sensors that worked individually. Due to lack of time and a longer troubleshooting, the prototype was not completed. Before the sensors can be used in a product, additional tests are required under the supervision of a sleep specialist.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-232117
Date January 2018
CreatorsHooshidar, Daniel, Amino, Yobart
PublisherKTH, Skolan för elektroteknik och datavetenskap (EECS)
Source SetsDiVA Archive at Upsalla University
LanguageSwedish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2018:141

Page generated in 0.0015 seconds