Return to search

Zur spektralen Diffusions- und Energietransferdynamik in halbleitenden einwandigen Kohlenstoffnanoröhren / Spectral diffusion and energy transfer dynamics in semiconducting single wall carbon nanotubes

Einwandige Kohlenstoffnanoröhren weisen aufgrund ihrer besonderen Struktur viele für ein rein kohlenstoffhaltiges Makromolekül ungewöhnliche Eigenschaften auf. Dies macht sie sowohl für die Erforschung grundlegender Phänomene in eindimensionalen Nanostrukturen als auch für potenzielle Anwendungen äußerst interessant. Da alle Atome einer SWNT Oberflächenatome sind, führt dies zu einer besonders ausgeprägten Empfindlichkeit ihrer elektronischen Eigenschaften auf Wechselwirkungen mit der Umgebung. Lokale zeitabhängige Änderungen in diesen Wechselwirkungen führen daher zu Phänomenen wie dem Photolumineszenz-Blinken und spektraler Diffusion. Die Erforschung und Kontrolle der Parameter, die für die Beeinflussung der elektronischen Eigenschaften von SWNTs durch Umgebungseinflüsse entscheidend sind, wird neben der spezifischen Synthese eine maßgebliche Rolle dabei spielen, ob und in welcher Form SWNTs in optoelektronischen Bauteilen zukünftig Anwendung finden. Die vorliegende Arbeit liefert einen Beitrag zum Verständnis dieser Wechselwirkungen, indem die Dynamik von Energietransferprozessen innerhalb von SWNTs und zwischen SWNTs untersucht wurde.

Im Rahmen dieser Arbeit wurden homogene und inhomogene Beiträge zur Linienverbreiterung von in einer Matrix eingebetteten SWNTs bestimmt. Dabei wurde erstmals beobachtet, dass die spektrale Diffusion sowohl bei Raumtemperatur als auch bei 17 K auf einer ultraschnellen Zeitskala, d. h. innerhalb von weniger als 1 ps abläuft. Mittels transienter Lochbrennspektroskopie konnte gezeigt werden, dass die homogene Linienbreite von (6,5)-SWNTs mit 3.6 meV nur den geringsten Beitrag zur Absorptionslinienbreite liefert, während die größte Verbreiterung mit mehr als 99 % inhomogen ist. Die inhomogene Linienbreite wurde aus inkohärenten 2D-Spektren, welche durch spektrale Lochbrennexperimente bei Variation der Anregungswellenlänge erhalten werden konnten, zu \(54\pm5\)meV bestimmt. Die Dynamik der spektralen Diffusion wird mit einer Exzitonendiffusion in einer durch lokale Umgebungswechselwirkungen verursachten inhomogenen Energielandschaft entlang der Nanorohrachse erklärt. Durch zeitaufgelöste Lochbrennexperimente unter nichtresonanter Anregung konnte gezeigt werden, dass die Populationsumverteilung innerhalb dieser Energielandschaft für eine energetisch abwärts gerichtete Relaxation ein spontaner Prozess ist. Im umgekehrten Fall ist sie dagegen thermisch aktiviert. Mögliche Einflüsse von Artefakten wurden anhand von Referenzmessungen diskutiert und die Bestimmung der homogenen Linienbreite durch komplementäre CW-Lochbrennexperimente ergänzt.

Durch Monte-Carlo-Simulationen konnten erstmals Informationen über die Form der Potenzialenergielandschaft entlang einer SWNT erhalten und die Größenordnung der Plateaubreite mit nahezu konstanter Energie innerhalb der Potenziallandschaft zu 5.8-18.2nm ermittelt werden. Dies gelang durch eine Kalibrierung der Simulationszeit anhand experimenteller transienter Absorptionsspektren. Im Rahmen dieses Modells wurde darüber hinaus die Zeit für einen Sprung zu einem benachbarten Gitterplatz der Energielandschaft zu 0.1 ps bestimmt.

Inter- und intraband-Relaxationsprozesse von SWNTs wurden mittels Photolumineszenzspektroskopie untersucht. Die Ergebnisse deuten auf eine temperaturunabhängige Effizienz der internen Konversion und die photostimulierte Generierung von Löschzentren hin. Anhand temperaturabhängiger PL-Messungen, die erstmals bei Anregung des \(S_1\)-Zustands durchgeführt wurden, konnte die Energiedifferenz zwischen dem hellen und dunklen Exziton für (6,5)-SWNTs im Rahmen des Modells eines Dreiniveausystems zu \(\delta = (3.7\pm0.1)\)meV bestimmt werden. Aus der guten Übereinstimmung des temperaturabhängigen Trends der PL-Intensität unter \(S_1\)-Anregung mit in früheren Studien erhaltenen Ergebnissen unter \(S_2\)-Anregung konnte geschlussfolgert werden, dass die Effizienz der internen Konversion nicht ausgeprägt temperaturabhängig ist. Für SWNT-Gelfilme wurde unter \(S_2\)-Anregung eine deutliche Abweichung zur \(S_1\)-Anregung in Form eines Bleichens der Photolumineszenz beobachtet. Dieses Phänomen ist in der Literatur wenig diskutiert und wurde daher in leistungsabhängigen PL-Experimenten weiter untersucht. Dabei wurde für die \(S_2\)- im Vergleich zur \(S_1\)-Anregung eine stärker ausgeprägte sublineare Leistungsabhängigkeit gefunden. Die Abweichung vom linearen Zusammenhang der PL-Intensität mit der Leistung trat hier schon bei um eine Größenordnung geringeren Leistungsdichten auf als in früheren Studien und kann mit einer Exziton-Exziton-Annihilation allein nicht erklärt werden. Möglicherweise ist die Öffnung zusätzlicher Zerfallskanäle durch metastabile Löschzentren für dieses Verhalten verantwortlich. Die PL-Experimente zeigten zudem ein zeitabhängiges irreversibles Bleichen unter \(S_2\)-Anregung, welches bei 30 K stärker ausgeprägt war als bei Raumtemperatur. Dessen Abhängigkeit von der eingestrahlten Photonenzahl lässt auf eine Akkumulation von Löschzentren schließen. Daher wird eine mögliche Redoxreaktion mit Wasser, ausgelöst durch die intrinsische p-Dotierung der SWNTs, als Quelle der Löschzentren diskutiert.

Das Verzweigungsverhältnis für die Relaxation nach \(S_2\)-Anregung von SWNTs wurde in Form der relativen Quantenausbeute bestimmt und eine nahezu quantitative interne Konversion des \(S_2\)-Exzitons gefunden. Dieses Ergebnis hat eine wichtige Bedeutung für potenzielle Anwendungen von SWNTs in der Photovoltaik, da die Verluste durch die interband-Relaxation bei einer Anregung des zweiten Subband-Exzitons <3% zu sein scheinen. Die Herausforderung des Experiments wird hier durch die geringe Stokes-Verschiebung von SWNTs verursacht, die eine quantitative Trennung von PL- und Streulicht unmöglich macht. Daher wurde ein Aufbau realisiert, in dem ein großer Teil des Streulichts bereits räumlich entfernt wird und die PL unter \(S_1\)- bzw. \(S_2\)-Anregung quantifizierbar und ohne eine Annahme über Streulicht-Anteile direkt vergleichbar ist. Sowohl für SDS- als auch für Polymer-stabilisierte SWNTs wurde eine relative Quantenausbeute von \(\xi \approxeq 1\) erhalten, was eine nahezu quantitative interne Konversion von \(S_2\)- zu \(S_1\)-Exzitonen innerhalb der PL-Lebensdauer nahelegt.

Anregungsenergietransferprozesse zwischen Kohlenstoffnanoröhren in mono- und bidispersen SWNT-Netzwerkfilmen definierter Zusammensetzung wurden mittels zeitaufgelöster Polarisationsanisotropie untersucht. Dabei wurden neben einem ultraschnellen Energietransfer in weniger als 1 ps auch Hinweise auf Beiträge des \(S_2\)-Exzitons an diesem Prozess gefunden. Die Ergebnisse der Experimente mit bidispersen SWNT-Netzwerkfilmen bestätigen den auch in PLE-Spektren beobachteten energetisch abwärts gerichteten Energietransfer von SWNTs mit großer zu solchen mit kleiner Bandlücke und liefern darüber hinaus eine Zeitskala von weniger als 1 ps für diesen Prozess. Die umgekehrte Transferrichtung konnte weder aus dem \(S_1\)- noch aus dem \(S_2\)-Exziton beobachtet werden. Eine Beschleunigung der Anisotropiedynamik bei \(S_2\)- im Vergleich zu S\uu1-Anregung deutet auf einen Beitrag des \(S_2\)-Exzitons am Energietransferprozess in Konkurrenz zur internen Konversion hin. Durch Referenzexperimente mit monodispersen Netzwerkfilmen konnte eine Beteiligung von Energietransferprozessen zwischen SWNTs der gleichen Chiralität auf einer Zeitskala von 1-2ps nachgewiesen werden. Dadurch konnten Beobachtungen von zeitabhängigen Anisotropieänderungen, die einen energetisch aufwärts gerichteten Energietransfer suggerieren, mit einem intra-Spezies-Transfer erklärt werden - Hinweise auf energetisch aufwärts gerichtete EET-Prozesse wurden nicht gefunden. Eine wichtige Erkenntnis aus diesen Experimenten ist die Tatsache, dass die Überlappung von Signalbeiträgen zu einer Verfälschung der Anisotropie und damit zu fehlerhaften Interpretationen führen kann. Darüber hinaus wurde auf den Einfluss der Probenheterogenität und der Alterung von SWNT-Netzwerkfilmen hingewiesen. Diese Untersuchungen legen nahe, dass ein effizienter Exzitonentransfer in SWNT-Netzwerkfilmen auch zwischen den einzelnen Röhrensträngen erfolgen kann und es somit möglich ist, die Effizienz entsprechender Solarzellen zu verbessern.

Im letzten Teil der Arbeit wurden erstmals transiente Absorptionsexperimente im Femtosekundenbereich mit SWNTs unter \(Gate-Doping\) durchgeführt. In ersten Experimenten konnte gezeigt werden, dass analog zur chemischen Dotierung von SWNTs die Dynamik des \(S_1\)-Bleichens eines (6,5)-SWNT-Netzwerkfilms nach \(S_2\)-Anregung unter \(Gate-Doping\) eine Beschleunigung durch zusätzliche Zerfallskanäle erfährt. Die elektrochemische Bandlücke wurde für (6,5)-Nanoröhren zu 1.5 eV bestimmt. Eine Verringerung der Photoabsorptionsamplitude mit zunehmendem Potenzial lässt Vermutungen über die Natur dieses in transienten Absorptionsexperimenten beobachteten PA-Merkmals in Form der Absorption einer dotierten SWNT-Spezies zu. Diese Untersuchungen liefern erste Einblicke in die Art und Weise, wie eine elektrochemische Modifizierung von SWNTs die elektronische Bandstruktur und Ladungsträgerdynamik verändert. / Due to their unique structure single wall carbon nanotubes exhibit many exceptional properties compared to other carbon based macromolecules. Their striking properties make SWNTs ideal candidates for the investigation of fundamental phenomena in one-dimensional nanostructures as well as for potential applications. Since all carbon atoms are at the SWNT surface their electronic properties are strongly sensitive towards local environmental interactions. Time-dependent local modifications of these interactions result in phenomena like photoluminescence blinking and spectral diffusion. In addition to specific synthesis, the investigation as well as the proper control of the parameters that affect the environmental influence on the electronic properties of SWNTs will be key factors for the question if and how SWNTs will be used in future optoelectronic devices. This thesis contributes to the understanding of these environmental interactions by means of an investigation of energy transfer dynamics within and between SWNTs.

Within the scope of this work, homogeneous and inhomogeneous contributions to the line broadening of matrix embedded SWNTs were determined. It was observed for the first time that spectral diffusion takes place on an ultrafast time scale within less than 1 ps both, at room temperature and at 17 K. Transient hole-burning spectroscopy was used to show, that the homogeneous linewidth of (6,5)-SWNTs is 3.6 meV and thus contributes only a small fraction to the absorption linewidth, whereas inhomogeneous broadening represents the largest contribution with more than 99 %. The inhomogeneous linewidth was deduced from incoherent 2D-spectra which were obtained by excitation wavelength dependent hole-burning spectroscopy. The dynamics of spectral diffusion is consistent with an exciton diffusion in an inhomogeneous energy landscape along the SWNT axis, caused by local environmental interactions. Off-resonant spectral hole-burning experiments revealed that a bathochromic spectral diffusion is a spontaneous process, whereas its hypsochromic equivalent is thermally activated. Control experiments were performed to show possible influences of artifacts on the determination of the homogeneous linewidth. The latter was accompanied by means of complementary CW hole-burning spectroscopy experiments.

From Monte-Carlo simulations information about the granularity of the potential energy landscape along the SWNT axis was obtained. The width of plateau regions with nearly constant energy was found to be in the range of 5.8-18.2nm. This was accomplished by calibration of the simulation time on the basis of experimental transient absorption spectra. Within this model the time interval for a population hop to adjacent lattice sites was deduced to be on the order of 0.1 ps.

Inter- and intraband relaxation processes of SWNTs were investigated by means of photoluminescence spectroscopy. The results suggest that the efficiency of internal conversion is temperature-independent and that quenching centers are generated by irradiation of SWNTs with light. From the PL temperature dependence, which was carried out under \(S_1\) excitation for the first time, the energy splitting \(\delta\) between the bright and dark exciton states for (6,5)-SWNTs was determined. Within the model of a three level system a value of \(\delta = 3.7\pm0.1\)meV was deduced. The good agreement of the temperature dependence of PL intensity under \(S_1\) excitation with previously published studies under \(S_2\) excitation suggests, that the efficiency of internal conversion exhibits no pronounced temperature dependence. A strong PL bleaching was observed for SWNT gelatin films under \(S_2\) excitation, which has not been found in case of \(S_1\) excitation. Since this discrepancy is only little discussed in literature, power dependent PL experiments were performed for further investigation. For \(S_2\) excitation the sublinear power dependence was found to be more pronounced compared to \(S_1\) excitation. The deviation of PL intensity from a linear trend with increasing excitation power occurred at excitation densities which are one order of magnitude lower as compared to earlier studies and cannot be explained by pure exciton-exciton annihilation. Instead, additional relaxation channels seem to be opened, possibly by the formation of metastable quenching species. The PL experiments also revealed an irreversible time-dependent bleaching under \(S_2\) excitation which was found to be more pronounced at 30 K compared to room temperature. The bleaching dependence on the photon number suggests an accumulation of quenching sites. A possible candidate might be a quenching SWNT species formed by a redox reaction with water in presence of intrinsic p-doping.

The branching ratio for relaxation after \(S_2\) excitation was determined as the relative PL quantum yield of the second and first subband exciton for which an almost quantitative internal conversion was deduced. This result is important for potential applications of SWNTs in photovoltaic devices since the loss due to interband relaxation of the \(S_2\) exciton seems to be < 3%. The small Stokes shift in SWNTs hampers the quantitative separation of PL and excitation intensity. In order to avoid contributions from scattered excitation light, a setup was implemented that allows spatial removal of a large fraction of excitation intensity. Furthermore, the PL intensity for both excitation pathways can be quantified at the same time within the same setup and without assumptions about stray light contributions. For SDS- as well as polymer-stabilized SWNT dispersions a relative quantum yield of \(\xi \approxeq 1\) was determined which suggests, that internal conversion of \(S_2\) excitons has a quantum yield of almost unity within the PL lifetime.

Excitation energy transfer processes between carbon nanotubes in mono- and bidisperse SWNT network films of predefined composition were investigated by means of time-resolved polarization anisotropy. An ultrafast energy transfer within less than 1 ps as well as contributions of the \(S_2\) exciton to EET were found. The results confirm observations of downhill energy transfer in bidisperse network films from larger to smaller bandgap SWNTs as observed in PLE spectra. The transfer occurs in less than one picosecond. An uphill energy transfer from small to large bandgap tubes has been observed neither for \(S_1\) nor for \(S_2\) excitation. An increase of anisotropy decay rate for \(S_2\) excitation suggests a contribution of energy transfer from the \(S_2\) state as a competing pathway. From reference experiments with monodisperse SWNT network films evidence for a contribution of energy transfer between the same SWNT species within 1-2 ps was provided. This explains consistently the observation of an anisotropy decay after excitation of small band gap tubes in bidisperse networks which could be misinterpreted as an uphill energy transfer. One of the key findings in this work is the fact that anisotropy values might be corrupted due to signal overlap in the transient absorption spectra. Furthermore, it was pointed out that effects of sample heterogeneity and film aging might be important in the context of applications of SWNT thin films under ambient conditions. The results suggest that efficient exciton transfer in SWNT network films is possible between individual SWNT fibers, which can help to improve the efficiency of corresponding photovoltaic devices.

In the last part of this work transient absorption experiments on the femtosecond time-scale were performed with SWNTs in the presence of gate doping for the first time. The experiments show that analogous to the case of chemical doping the dynamics of the \(S_1\) bleach recovery of a (6,5)-SWNT network film accelerate in the presence of gate doping. This demonstrates that doping opens an additional relaxation channel. The electrochemical band gap was determined for (6,5)-SWNTs from transient absorption spectroscopy to be 1.50 eV. The observation of a decrease in photoabsorption amplitude with increasing potential leads to speculations about the nature of the PA as an absorption of a doped SWNT species. The investigation provides first insight into the way how electrochemical modification of SWNTs alters their electronic band structure and charge carrier dynamics.

Identiferoai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:12277
Date January 2015
CreatorsSchilling, Daniel
Source SetsUniversity of Würzburg
Languagedeu
Detected LanguageGerman
Typedoctoralthesis, doc-type:doctoralThesis
Formatapplication/pdf
Rightshttps://opus.bibliothek.uni-wuerzburg.de/doku/lic_mit_pod.php, info:eu-repo/semantics/openAccess

Page generated in 0.0046 seconds