Return to search

Formulação de teorias de campos via estruturas simpléticas e o produto de Weyl

Dissertação (mestrado)—Universidade de Brasília, Instituto de Física, 2006. / Submitted by Kathryn Cardim Araujo (kathryn.cardim@gmail.com) on 2009-11-20T13:36:02Z
No. of bitstreams: 1
2006_Ronni Geraldo Gomes de Amorim.pdf: 1938646 bytes, checksum: b9695d20b5713570b0076225c000e820 (MD5) / Approved for entry into archive by Joanita Pereira(joanita) on 2010-02-02T15:24:46Z (GMT) No. of bitstreams: 1
2006_Ronni Geraldo Gomes de Amorim.pdf: 1938646 bytes, checksum: b9695d20b5713570b0076225c000e820 (MD5) / Made available in DSpace on 2010-02-02T15:24:46Z (GMT). No. of bitstreams: 1
2006_Ronni Geraldo Gomes de Amorim.pdf: 1938646 bytes, checksum: b9695d20b5713570b0076225c000e820 (MD5)
Previous issue date: 2006 / Neste trabalho, utiliza-se operadores-estrela definidos a partir do produto de Weyl em geometria não comutativa, para estudar representações unitárias para os grupos de Galilei e de Poincaré. Mediante o estudo da álgebra de Galilei-Lie, fica construído um formalismo auto-contido para a mecânica quântica no espaço de fase. Para testar a consistência do formalismo, alguns resultados são obtidos, tais como a equação de continuidade. E buscando a aplicabilidade, problemas de autovalores da equação de Schroedinger no espaço de fase são discutidos, como o oscilador harmônico e o potencial de Liouville. No contexto do estudo do grupo de Poincaré, escreve-se as equações de Klein-Gordon e de Dirac no espaço de fase, escrevendo também as lagrangianas e correntes conservadas para estes dois campos. Para os campos estudados aqui, as quantidades conservadas são deduzidas via o teorema de Noether no espaço de fase. ________________________________________________________________________________________ ABSTRACT / In this work, it is used star operators defined from the Weyl’s product of the noncommutative geometry, to study unitary representations for the Galilei and Poincaré groups. By the study of the Galilei Lie algebra, a self-contained formalism is built for quantum mechanics in phase space. In order to test the consistency of the formalism, some results are obtained, such as the continuity equation. As applications problems of eigenvalues of the Schroedinger equation is discussed in phase space, as the harmonic oscillator and the Liouville potential. In this context of phase space, we study the Poincaré group, deriving the Klein Gordon and Dirac equation, as well as their respective lagrangian densities. For the fields studied here, the conservation law are derived by using the Noether theorem in phase space.

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.unb.br:10482/3492
Date January 2006
CreatorsAmorim, Ronni Geraldo Gomes de
ContributorsSantana, Ademir Eugênio de, Fernandes, Marco Cezar Barbosa
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Repositório Institucional da UnB, instname:Universidade de Brasília, instacron:UNB
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.002 seconds