Submitted by PPG Engenharia El?trica (engenharia.pg.eletrica@pucrs.br) on 2018-10-29T13:30:23Z
No. of bitstreams: 1
TIAGO BENETTI_DIS.pdf: 5038519 bytes, checksum: 95fa8d1b367b574eee27e772a55a9a49 (MD5) / Approved for entry into archive by Caroline Xavier (caroline.xavier@pucrs.br) on 2018-10-30T17:21:55Z (GMT) No. of bitstreams: 1
TIAGO BENETTI_DIS.pdf: 5038519 bytes, checksum: 95fa8d1b367b574eee27e772a55a9a49 (MD5) / Made available in DSpace on 2018-10-30T17:27:25Z (GMT). No. of bitstreams: 1
TIAGO BENETTI_DIS.pdf: 5038519 bytes, checksum: 95fa8d1b367b574eee27e772a55a9a49 (MD5)
Previous issue date: 2018-08-31 / Heart rate monitoring using Photoplethysmography (PPG) signals acquired from the individuals pulse has become popular due to emergence of numerous low cost wearable devices. However, monitoring during physical activities has obstacles because of the influence of motion artifacts in PPG signals. The objective of this work is to introduce a new algorithm capable of removing motion artifacts and estimating heart rate from pulse PPG signals. Normalized Least Mean Square (NLMS) and Recursive Least Squares (RLS) algorithms are proposed for an adaptive filtering structure that uses acceleration signals as reference to remove motion artifacts. The algorithm uses the Periodogram of the filtered signals to extract their heart rates, which will be used together with a PPG Signal Quality Index to feed the input of a Kalman Filter. Specific heuristics and the Quality Index collaborate so that the Kalman filter provides a heart rate estimate with high accuracy and robustness to measurement uncertainties. The algorithm was validated from the heart rate obtained from Electrocardiography signals and the proposed method with the RLS algorithm presented the best results with an absolute mean error of 1.54 beats per minute (bpm) and standard deviation of 0.62 bpm, recorded for 12 individuals performing a running activity on a treadmill with varying speeds. The results make the performance of the algorithm comparable and even better than several recently developed methods in this field. In addition, the algorithm presented a low computational cost and suitable to the time interval in which the heart rate estimate is performed. Thus, it is expected that this algorithm will improve the obtaining of heart rate in currently available wearable devices. / O monitoramento da frequ?ncia card?aca utilizando sinais de Fotopletismografia ou PPG (do ingl?s, Photopletismography) adquiridos do pulso de indiv?duos tem se popularizado devido ao surgimento de in?meros dispositivos wearable de baixo custo. No entanto, o monitoramento durante atividades f?sicas tem dificuldades em raz?o da influ?ncia de artefatos de movimento nos sinais de PPG. O objetivo deste trabalho ? introduzir um novo algoritmo capaz de remover artefatos de movimento e estimar a frequ?ncia card?aca de sinais de PPG de pulso. Os algoritmos do M?nimo Quadrado M?dio Normalizado ou NLMS (do ingl?s, Normalized Least Mean Square) e de M?nimos Quadrados Recursivos ou RLS (do ingl?s, Recursive Least Squares) s?o propostos para uma estrutura de filtragem adaptativa que utiliza sinais de acelera??o como refer?ncia para remover os artefatos de movimento. O algoritmo utiliza o Periodograma dos sinais filtrados para extrair suas frequ?ncias card?acas, que ser?o utilizadas juntamente com um ?ndice de Qualidade do Sinal de PPG para alimentar a entrada de um Filtro de Kalman. Heur?sticas espec?ficas e o ?ndice de Qualidade colaboram para que filtro de Kalman forne?a uma estimativa da frequ?ncia card?aca com alta acur?cia e robustez a incertezas de medi??o. O algoritmo foi validado a partir da frequ?ncia card?aca obtida de sinais de Eletrocardiografia e o m?todo proposto com o algoritmo RLS apresentou os melhores resultados com um erro m?dio absoluto de 1,54 batimentos por minuto (bpm) e desvio padr?o de 0,62 bpm, registrados para 12 indiv?duos realizando uma atividade de corrida em uma esteira com velocidades variadas. Os resultados tornam o desempenho do algoritmo compar?vel e at? mesmo melhor que v?rios m?todos desenvolvidos recentemente neste campo. Al?m disso, o algoritmo apresentou um custo computacional baixo e adequado ao intervalo de tempo em que a estimativa da frequ?ncia card?aca ? realizada. Dessa forma, espera-se que este algoritmo melhore a obten??o da frequ?ncia card?aca em dispositivos wearable atualmente dispon?veis.
Identifer | oai:union.ndltd.org:IBICT/oai:tede2.pucrs.br:tede/8337 |
Date | 31 August 2018 |
Creators | Benetti, Tiago |
Contributors | Baptista, Rafael Reimann |
Publisher | Pontif?cia Universidade Cat?lica do Rio Grande do Sul, Programa de P?s-Gradua??o em Engenharia El?trica, PUCRS, Brasil, Escola Polit?cnica |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da PUC_RS, instname:Pontifícia Universidade Católica do Rio Grande do Sul, instacron:PUC_RS |
Rights | info:eu-repo/semantics/openAccess |
Relation | -266050410927282029, 500, 500, 4518971056484826825 |
Page generated in 0.0026 seconds