Return to search

DEVELOPMENT OF SEQUENCE-SPECIFIC MOLECULAR MARKERS BASED ON PHENYLPROPANOID PATHWAY GENES FOR RESISTANCE TO FUSARIUM GRAMINEARUM [SCHWABE] IN ZEA MAYS (L.)

The fungus Fusarium graminearum (Schwabe) causes Gibberella ear rot in maize, resulting in accumulation of harmful mycotoxins in the grain. Disease severity and pericarp/aleurone dehydrodiferulic acid content are negatively correlated. Furthermore, quantitative trait locus mapping (QTL) identified colocalization between QTL for both traits. A candidate gene approach was employed to identify the genes responsible for the observed colocalization. Candidate genes selected on the basis of their putative involvement in various aspects of cell wall DFA accumulation were mapped in silico using the maize genome sequence. Polymorphisms were discovered in putative genes and converted to molecular markers. The in silico mapping effort was successful in predicting map locations of the analyzed sequences, and the segregation of certain marker alleles could explain variation for Gibberella ear rot severity and pericarp-aleurone DFA content.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OGU.10214/3053
Date30 September 2011
CreatorsMartin, Christopher Joseph
ContributorsPauls, Peter
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0023 seconds