Return to search

Solitary objects on quantum spin rings

We investigate whether quantum spin rings with nearest-neighbor Heisenberg or Ising exchange interactions can host solitary states. Using complete diagonalization techniques the system is described without classical or semiclassical approximation. In this case definitions used in connection with classical solitons are not applicable, one needs to redefine what solitary objects on a quantum spin system with translational symmetry ought to be. Thus, we start our contribution by defining which quantum states possess solitary character. In addition we discuss useful observables in order to visualize solitary quantum states. Then we demonstrate for various quantum spin rings that solitary quantum states indeed exist, and that they are moving around the spin ring without changing their shape in the course of time.

Identiferoai:union.ndltd.org:uni-osnabrueck.de/oai:repositorium.ub.uni-osnabrueck.de:urn:nbn:de:gbv:700-2004121610
Date16 December 2004
CreatorsShchelokovskyy, Pavlo
ContributorsProf. Dr. Klaus Bärwinkel, apl. Prof. Dr. Heinz-Jürgen Schmidt, apl. Prof. Dr. Jürgen Schnack, apl. Prof. Dr. Klaus Betzler
Source SetsUniversität Osnabrück
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis
Formatapplication/zip, application/pdf
Rightshttp://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0017 seconds