The dissertation covers phase transitions in the realm of the Anderson model of localization on topologically disordered Voronoi-Delaunay lattices. The disorder is given by random connections which implies correlations due to the restrictive lattice construction. Strictly speaking, the system features "strong anticorrelation", which is responsible for quenched long-range fluctuations of the coordination number. This attribute leads to violations of universal behavior in various system, e.g. Ising and Potts model, and to modifications of the Harris and the Imry-Ma criteria. In general, these exceptions serve to further understanding of critical phenomena. Hence, the question arises whether such deviations also occur in the realm of the Anderson model of localization in combination with random Voronoi-Delaunay lattice. For this purpose, four cases, which are distinguished by the spatial dimension of the systems and by the presence or absence of a magnetic field, are investigated by means of two different methods, i.e the multifractal analysis and the recursive Green function approach. The behavior is classified by the existence and type of occurring phase transitions and by the critical exponent v of the localization length. The results for the four cases can be summarized as follows. In two-dimensional systems, no phase transitions occur without a magnetic field, and all states are localized as a result of topological disorder. The behavior changes under the influence of the magnetic field. There are so-called quantum Hall transitions, which are phase changes between two localized regions. For low magnetic field strengths, the resulting exponent v ≈ 2.6 coincides with established values in literature. For higher strengths, an increased value, v ≈ 2.9, was determined. The deviations are probably caused by so-called Landau level coupling, where electrons scatter between different Landau levels. In contrast, the principle behavior in three-dimensional systems is equal in both cases. Two localization-delocalization transitions occur in each system. For these transitions the exponents v ≈ 1.58 and v ≈ 1.45 were determined for systems in absence and in presence of a magnetic field, respectively. This behavior and the obtained values agree with known results, and thus no deviation from the universal behavior can be observed.:1. Introduction
2. Random Voronoi-Delaunay lattice
2.1. Definition
2.2. Properties
2.3. Numerical construction
3. Anderson localization
3.1. Conventional Anderson transition
3.1.1. Fundamentals
3.1.2. Scaling theory of localization
3.1.3. Universality
3.2. Quantum Hall transition
3.2.1. Universality
3.3. Random Voronoi-Delaunay Hamiltonian
4. Methods
4.1. Multifractal analysis
4.1.1. Fundamentals
4.1.2. Box-size scaling
4.1.3. Partitioning scheme
4.1.4. Numerical realization
4.2. Recursive Green function approach
4.2.1. Fundamentals
4.2.2. Recursive formulation
4.2.3. Layer construction
4.3. Finite-size scaling approach
4.3.1. Scaling functions
4.3.2. Numerical determination
5. Electron behavior on 2D random Voronoi-Delaunay lattices
5.1. 2D orthogonal systems
5.2. 2D unitary systems
5.2.1. Density of states and principal behavior
5.2.2. Criticality in the lowest Landau band
5.2.3. Criticality in higher Landau bands
5.2.4. Edge states
6. Electron behavior on 3D random Voronoi-Delaunay lattices
6.1. 3D orthogonal systems
6.1.1. Pure connectivity disorder
6.1.2. Additional potential disorder
6.2. 3D unitary systems
6.2.1. Pure topological disorder
7. Conclusion
Bibliography
A. Appendices
A.1. Quantum Hall effect on regular lattices
A.1.1. Simple square lattice
A.1.2. Triangular lattice
A.2. Further quantum Hall transitions on 2D random Voronoi-Delaunay lattices
Lebenslauf
Publications / Diese Dissertation behandelt Phasenübergange im Rahmen des Anderson-Modells der Lokalisierung in topologisch ungeordneten Voronoi-Delaunay-Gittern. Die spezielle Art der Unordnung spiegelt sich u.a. in zufälligen Verknüpfungen wider, welche aufgrund der restriktiven Gitterkonstruktion miteinander korrelieren. Genauer gesagt zeigt das System eine "starke Antikorrelation", die dafür sorgt, dass langreichweitige Fluktuationen der Verknüpfungszahl unterdrückt werden. Diese Eigenschaft hat in anderen Systemen, z.B. im Ising- und Potts-Modell, zur Abweichung vom universellen Verhalten von Phasenübergängen geführt und bewirkt eine Modifikation von allgemeinen Aussagen, wie dem Harris- and Imry-Ma-Kriterium. Die Untersuchung solcher Ausnahmen dient zur Weiterentwicklung des Verständnisses von kritischen Phänomenen. Somit stellt sich die Frage, ob solche Abweichungen auch im Anderson-Modell der Lokalisierung unter Verwendung eines solchen Gitters auftreten. Dafür werden insgesamt vier Fälle, welche durch die Dimension des Gitters und durch die An- bzw. Abwesenheit eines magnetischen Feldes unterschieden werden, mit Hilfe zweier unterschiedlicher Methoden, d.h. der Multifraktalanalyse und der rekursiven Greensfunktionsmethode, untersucht. Das Verhalten wird anhand der Existenz und Art der Phasenübergänge und anhand des kritischen Exponenten v der Lokalisierungslänge unterschieden. Für die vier Fälle lassen sich die Ergebnisse wie folgt zusammenfassen. In zweidimensionalen Systemen treten ohne Magnetfeld keine Phasenübergänge auf und alle Zustände sind infolge der topologischen Unordnung lokalisiert. Unter Einfluss des Magnetfeldes ändert sich das Verhalten. Es kommt zur Ausformung von Landau-Bändern mit sogenannten Quanten-Hall-Übergängen, bei denen ein Phasenwechsel zwischen zwei lokalisierten Bereichen auftritt. Für geringe Magnetfeldstärken stimmen die erzielten Ergebnisse mit den bekannten Exponenten v ≈ 2.6 überein. Allerdings wurde für stärkere magnetische Felder ein höherer Wert, v ≈ 2.9, ermittelt. Die Abweichungen gehen vermutlich auf die zugleich gestiegene Unordnungsstärke zurück, welche dafür sorgt, dass Elektronen zwischen verschiedenen Landau-Bändern streuen können und so nicht das kritische Verhalten eines reinen Quanten-Hall-Überganges repräsentieren. Im Gegensatz dazu ist das Verhalten in dreidimensionalen Systemen für beide Fälle ähnlich. Es treten in jedem System zwei Phasenübergänge zwischen lokalisierten und delokalisierten Bereichen auf. Für diese Übergänge wurde der Exponent v ≈ 1.58 ohne und v ≈ 1.45 unter Einfluss eines magnetischen Feldes ermittelt. Dieses Verhalten und die jeweils ermittelten Werte stimmen mit bekannten Ergebnissen überein. Eine Abweichung vom universellen Verhalten wird somit nicht beobachtet.:1. Introduction
2. Random Voronoi-Delaunay lattice
2.1. Definition
2.2. Properties
2.3. Numerical construction
3. Anderson localization
3.1. Conventional Anderson transition
3.1.1. Fundamentals
3.1.2. Scaling theory of localization
3.1.3. Universality
3.2. Quantum Hall transition
3.2.1. Universality
3.3. Random Voronoi-Delaunay Hamiltonian
4. Methods
4.1. Multifractal analysis
4.1.1. Fundamentals
4.1.2. Box-size scaling
4.1.3. Partitioning scheme
4.1.4. Numerical realization
4.2. Recursive Green function approach
4.2.1. Fundamentals
4.2.2. Recursive formulation
4.2.3. Layer construction
4.3. Finite-size scaling approach
4.3.1. Scaling functions
4.3.2. Numerical determination
5. Electron behavior on 2D random Voronoi-Delaunay lattices
5.1. 2D orthogonal systems
5.2. 2D unitary systems
5.2.1. Density of states and principal behavior
5.2.2. Criticality in the lowest Landau band
5.2.3. Criticality in higher Landau bands
5.2.4. Edge states
6. Electron behavior on 3D random Voronoi-Delaunay lattices
6.1. 3D orthogonal systems
6.1.1. Pure connectivity disorder
6.1.2. Additional potential disorder
6.2. 3D unitary systems
6.2.1. Pure topological disorder
7. Conclusion
Bibliography
A. Appendices
A.1. Quantum Hall effect on regular lattices
A.1.1. Simple square lattice
A.1.2. Triangular lattice
A.2. Further quantum Hall transitions on 2D random Voronoi-Delaunay lattices
Lebenslauf
Publications
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:20846 |
Date | 05 December 2017 |
Creators | Puschmann, Martin |
Contributors | Cain, Philipp, Schreiber, Michael, Vojta, Thomas, Technische Universität Chemnitz |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.002 seconds