Return to search

The HMG box of the histone lysine methylase spLsd1 is required for entry into quiescence

The capability to control the progression of the cell cycle, including the means to enter into a stable non-proliferative state, is essential for eukaryotic unicellular and multicellular organisms. A quiescent state similar to G0 of higher eukaryotes can be induced by nitrogen starvation of the fission yeast model organism Schizosaccharomyces pombe. Using high-resolution tiling arrays for genome-wide transcriptional profiling we explore the early transcriptional reprogramming on the route to quiescence. Furthermore, we demonstrate that cells carrying a mutation in the high mobility group (HMG) box of the histone lysine demethylase spLsd1 fail to acquire characteristics of quiescent cells and rapidly lose viability under nitrogen-starved conditions. Since no such defect is seen as a result of catalytic inactivation, the HMG domain of spLsd1 seems to confer a function to the protein that is independent of the histone demethylase activity. We show that the HMG domain of spLsd1 is required for transcriptional activation and repression of a large set of genes, both during vegetative growth and on the route to quiescence. We also confirm that spLsd1 is a repressor of antisense transcription, and that this function is at least partially dependent on the HMG domain of the protein.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:sh-1772
Date January 2008
CreatorsNorman, Ulrika
PublisherSödertörns högskola, Institutionen för livsvetenskaper
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0017 seconds