Nous étudions mathématiquement et numériquement des problèmes de réaction-diffusion avec convection. Dans la première partie, nous montrons sous certaines conditions que les opérateurs considérés ont la propriété de Fredholm, sont propres, et nous construisons un degré topologique pour ces opérateurs. Nous utilisons le degré pour étudier les bifurcations pour un problème d'ondes progressives de réaction-diffusion-convection, et nous montrons l'existence de fronts de réaction modifiés par la convection naturelle. Nous nous intéressons également aux instabilités convectives pour ces solutions. Nous étudions dans la deuxième partie l'influence de la tension de surface sur la stabilité des fronts. Dans le cas de liquides non miscibles, nous montrons que l'interaction de la tension de surface et de la réaction chimique peut conduire à une instabilité nouvelle. Dans le cas de liquides miscibles, nous modélisons la tension transitoire par une contrainte supplémentaire dans les équations de Navier-Stokes. Nous montrons que le problème mathématique correspondant a une solution unique, et nous observons numériquement que les gradients de concentration peuvent engendrer des courants convectifs. Nous simulons l'évolution d'une goutte miscible sous l'influence de ces courants~: elle est comparable à celle d'une goutte non miscible sous l'action de la tension de surface, avec une tendance à s'arrondir ou à se scinder en gouttelettes. Nous montrons numé\-ri\-quement que la tension transitoire peut amplifier de petites déformations de fronts plans.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00002038 |
Date | 13 June 2002 |
Creators | Texier-Picard, Rozenn |
Publisher | Université Claude Bernard - Lyon I |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0019 seconds