La détection et l’évaluation des émotions sont des domaines qui suscitent un grand intérêt par de nombreuses communautés tant au niveau des sciences humaines que des sciences exactes. Dans cette thèse nous nous intéressons à la reconnaissance de l’anxiété sociale qui est une peur irrationnelle ressentie par une personne lors de toute forme de relation sociale. L’anxiété peut être révélée par un ensemble de traits physiques et physiologiques tels que l’intonation de la voix, les mimiques faciales, l’augmentation du rythme cardiaque, le rougissement… etc. L’avantage de l’utilisation des mesures physiologiques est que les individus ne peuvent pas les manipuler, c’est une source continue de données et chaque émotion est caractérisée par une variation physiologique particulière. Dans ce travail, nous proposons un système de mesure d’anxiété basé sur l’utilisation d’un seul signal physiologique « signal de pression sanguine volumique (Blood volume pulse BVP)». Le choix d’un seul capteur limite la gêne des sujets due au nombre de capteurs. De ce signal nous avons sélectionné des paramètres pertinents représentant au mieux les relations étroites du signal BVP avec le processus émotionnel de l’anxiété. Cet ensemble de paramètres est classé en utilisant les séparateurs à vastes marges SVM. Les travaux engagés dans le domaine de la reconnaissance des émotions utilisent fréquemment, pour support d’information, des données peu fiables ne correspondant pas toujours aux situations envisagées. Ce manque de fiabilité peut être dû à plusieurs paramètres parmi eux la subjectivité de la méthode d’évaluation utilisée (questionnaire, auto-évaluation des sujets, …etc.). Nous avons développé une approche d’évaluation objective des données basée sur les dynamiques des paramètres sélectionnés. La base de données utilisée a été enregistrée dans notre laboratoire dans des conditions réelles acquises sur des sujets présentant un niveau d’anxiété face aux situations sociales et qui ne sont pas sous traitement psychologique. L’inducteur utilisé est l’exposition à des environnements virtuels représentant quelques situations sociales redoutées. L’étape d’évaluation, nous a permis d’obtenir un modèle de données fiable pour la reconnaissance de deux niveaux d’anxiété. Ce modèle a été testé dans une clinique spécialisée dans les thérapies cognitives comportementales (TCC) sur des sujets phobiques. Les résultats obtenus mettent en lumière la fiabilité du modèle construit notamment pour la reconnaissance des niveaux d’anxiété sur des sujets sains ou sur des sujets phobiques ce qui constitue une solution au manque de données dont souffrent les différents domaines de reconnaissances / Detection and evaluation of emotions are areas of great interest in many communities both in terms of human and exact sciences. In this thesis we focus on social anxiety recognition, which is an irrational fear felt by a person during any form of social relationship. Anxiety can be revealed by a set of physical and physiological traits such as tone of voice, facial expressions, increased heart rate, flushing ... etc. The interest to the physiological measures is motivated by them robustness to avoid the artifacts created by human social masking, they are a continuous source of data and each emotion is characterized by a particular physiological variation. In this work, we propose a measurement system based on the use of a single physiological signal "Blood volume pulse BVP". The use of a single sensor limits the subjects’ discomfort. From the BVP signal we selected three relevant features which best represents the close relationship between this signal and anxiety status. This features set is classified using support vector machine SVM. The work undertaken in the field of emotion recognition frequently use, for information support, unreliable data do not always correspond to the situations envisaged. This lack of reliability may be due to several parameters among them the subjectivity of the evaluation method used (self-evaluation questionnaire, subjects…etc.). We have developed an approach to objective assessment of data based on the dynamics of selected features. The used database was recorded in our laboratory under real conditions acquired in subjects with a level of anxiety during social situations and who are not under psychological treatment. The used stimulus is the exposition to virtual environments representing some feared social situations. After the evaluation stage, we obtained a reliable model for the recognition of two levels of anxiety. The latter was tested in a clinic specializing in cognitive behavioral therapy (CBT) on phobic subjects. The results highlight the reliability of the built model specifically for the recognition of anxiety levels in healthy subjects or of phobic subjects, what constitutes a solution to the lack of data affecting different areas of recognition
Identifer | oai:union.ndltd.org:theses.fr/2014LORR0237 |
Date | 28 October 2014 |
Creators | Handouzi, Wahida |
Contributors | Université de Lorraine, Pruski, Alain, Maaoui, Choubeila |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0026 seconds