Le syndrome de détresse respiratoire aiguë (SDRA) est caractérisé par des lésions alvéolaires diffuses menant à un œdème alvéolaire lésionnel et une insuffisance respiratoire aiguë hypoxémique. Malgré les progrès récents dans la prise en charge des patients de réanimation, le SDRA reste un syndrome fréquent et associé à une morbimortalité importante. Deux mécanismes principaux du SDRA semblent associés à une mortalité plus élevée et à des réponses thérapeutiques différentes : la déficience de la clairance liquidienne alvéolaire (AFC, pour alveolar fluid clearance), l’incapacité pour l’épithélium alvéolaire de résorber l’œdème alvéolaire, et la présence d’un phénotype « hyper-inflammatoire ». Les approches pharmacologiques du traitement du SDRA restent limitées et il est nécessaire de poursuivre l’étude des voies biologiques impliquées dans la pathogénie du SDRA et dans sa résolution afin de développer des approches innovantes des prises en charge diagnostique et thérapeutique du SDRA. RAGE, le récepteur des produits de glycation avancée, est un récepteur multi-ligands, exprimé abondamment par les cellules épithéliales alvéolaires du poumon (pneumocytes), qui module de nombreuses voies de signalisation intracellulaire. De nombreuses études récentes suggèrent que sRAGE, la forme soluble principale de RAGE, pourrait servir de marqueur lésionnel du pneumocyte de type I, et que RAGE pourrait jouer un rôle-pivot dans la pathophysiologie du SDRA, en initiant et en entretenant la réponse inflammatoire alvéolaire. Nos objectifs étaient de caractériser les rôles de RAGE au cours du SDRA, grâce à une approche translationnelle combinant études cliniques et précliniques. D’abord, des études cliniques observationnelles et interventionnelles ont été conduites afin de caractériser sRAGE comme un véritable biomarqueur dans le SDRA. Ensuite, des cultures in vitro de cellules épithéliales et de macrophages, ainsi qu’un modèle expérimental in vivo de SDRA murin par instillation trachéale d’acide chlorhydrique ont été utilisés pour décrire les effets de la voie RAGE sur les mécanismes d’AFC et l’inflammation macrophagique médiée par l’inflammasome « Nod-Like Receptor family, Pyrin domain containing 3 » (NLRP3). Enfin, l’effet d’une inhibition de RAGE, par sRAGE recombinant ou par anticorps monoclonal anti-RAGE, était testée en modèle murin. Nos résultats issus des études cliniques suggèrent que sRAGE présente toutes les caractéristiques d’un biomarqueur au cours du SDRA, avec un intérêt dans le diagnostic, le pronostic et la prédiction du risque de développer un SDRA dans une population à risque. Pris ensemble, notre travail suggère que la voie RAGE joue un rôle important dans la régulation de l’atteinte pulmonaire, de l’AFC et de l’activation macrophagique au cours du SDRA. Toutefois, les mécanismes précis de cette régulation restent incertains. La forme soluble de RAGE (sRAGE), lorsqu’elle est dosée dans le plasma, présente toutes les caractéristiques d’un biomarqueur pouvant être utile en pratique clinique, mais son intérêt dans la sélection de sous-groupes (ou « phénotypes ») de patients pouvant bénéficier de traitements ciblés reste à étudier. La voie RAGE pourrait enfin représenter une cible thérapeutique prometteuse. Bien que des études de validation restent nécessaires, ces résultats pourraient ouvrir de nouvelles perspectives dans la prise en charge des patients atteints de SDRA. / The acute respiratory distress syndrome (ARDS) is associated with diffuse alveolarinjury leading to increased permeability pulmonary edema and hypoxemic respiratory failure. Despite recent improvements in intensive care, ARDS is still frequent and associated with high mortality and morbidity. Two major features of ARDS may contribute to mortality and response to treatment: impaired alveolar fluid clearance (AFC), i.e. altered capacity of the alveolar epithelium to remove edema fluid from distal lung airspaces, and phenotypes of severe inflammation. Pharmacological approaches of ARDS treatment are limited and further mechanistic explorations are needed to develop innovative diagnostic and therapeutic approaches. The receptor for advanced glycation endproducts (RAGE) is a multiligand pattern recognition receptor that is abundantly expressed by lung alveolar epithelial cells andmodulates several cellular signaling pathways. There is growing evidence supporting sRAGE (the main soluble isoform of RAGE) as a marker of epithelial cell injury, and RAGE may be pivotal in ARDS pathophysiology through the initiation and perpetuation of inflammatory responses. Our objectives were to characterize the roles of RAGE in ARDS through a translational approach combining preclinical and clinical studies. First, observational and interventional clinical studies were conducted to test sRAGE as a biomarker during ARDS.Then, cultures of epithelial cells, macrophages and a mouse model of acidinduced lung injury were used to describe the effects of RAGE pathway on AFC and inflammation, with special emphasis on a macrophage activation through NodLikeReceptor family, Pyrindomain containing 3 (NLRP3) inflammasome. Acidinjured mice were treated with an antiRAGE monoclonal antibody or recombinant sRAGE to test the impact of RAGE inhibition on criteria of experimental ARDS. Results from clinical studies support a role of sRAGE as a biomarker of ARDS, withdiagnostic, prognostic and predictive values. In addition, plasma sRAGE is correlated with a lung imaging phenotype of nonfocal ARDS and could inform on therapeutic response. Herein, we also describe in vivo and in vitro effects of RAGE activation on transepithelial fluid transport and expression levels of epithelial channels (aquaporin 5, αNa,KATPaseandαENaC) and on macrophage activation through NLRP3 inflammasome. Finally, RAGE inhibition improves AFC and decreases lung injury in vivo. Taken together, our findings support a role of RAGE pathway in the regulation of lung injury, AFC and macrophage activation during ARDS, albeit precise regulatory mechanisms remain uncertain. sRAGE has most features of a validated biomarker that could be used in clinical medicine, but whether it may help to identify subgroups (or phenotypes) of patients that would benefit from tailored therapy remains underinvestigated. Modulation ofRAGE pathway may be a promising therapeutic target, and though validation studies are warranted, such findings may ultimately open novel diagnostic and therapeutic perspectivesin patients with ARDS.
Identifer | oai:union.ndltd.org:theses.fr/2016CLF1MM09 |
Date | 06 June 2016 |
Creators | Jabaudon Gandet, Matthieu |
Contributors | Clermont-Ferrand 1, Constantin, Jean-Michel |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0031 seconds