<p align="justify">Il y a un demi siècle, Fermi, Pasta et Ulam découvraient la récurrence du même nom, et créaient une discipline nouvelle, la dynamique non linéaire. Leur expérience numérique consistait à exciter le mode fondamental d'une chaîne d'oscillateurs reliés entre eux par des ressorts linéaires et faiblement non linéaires. Alors qu'ils s'attendaient à ce que l'énergie se répartisse progressivement sur un large spectre en raison du couplage non linéaire, ils observèrent au contraire un échange périodique (récurrent) d'énergie entre quelques-uns des modes d'ordre inférieur uniquement. Dix ans plus tard, des chercheurs ont interprété ce comportement récurrent comme le résultat de l'interaction entre des impulsions qui se propagent sans se déformer et résistent aux collisions entre elles, les solitons. Par la suite, le soliton a émergé dans différents domaines pour finalement occuper le cœur des sciences non linéaires. Et c'est sans doute en optique non linéaire que le soliton a connu ses plus grands succès, tant sur le plan fondamental que sur celui des applications. En particulier, les phénomènes non linéaires sont aisés à observer dans les fibres optiques grâce au large éventail des sources lasers disponibles et en raison du fort confinement de la lumière qui s'y propage.</p>
<p align="justify">Dans notre travail de thèse, nous avons apporté la première démonstration expérimentale de la récurrence de Fermi-Pasta-Ulam dans la dynamique d'instabilité modulationnelle en fibre optique. En effet, une onde continue perturbée évolue spontanément, sous certaines conditions, en un train d'impulsions : l'énergie est transférée du mode fondamental (l'onde continue) aux modes d'ordre supérieur. La théorie prévoit qu'ensuite, l'onde continue initiale se reforme comme l'énergie revient vers le mode fondamental. Pour réaliser cette expérience, il faut parvenir à rencontrer les conditions prescrites par la théorie tout en évitant l'intervention d'effets perturbateurs. Dans ce but, nous avons étudié l'évolution d'impulsions plateaux, qui reproduisent les conditions d'onde continue requises par la théorie tout en permettant d'atteindre des puissances suffisantes pour observer la récurrence.</p>
<p align="justify">Nous nous sommes ensuite intéressés à un nouveau type de soliton appelé paroi de domaines de polarisation, qui se présente comme la structure de commutation entre deux domaines semi-continus de polarisations circulaires orthogonales. En principe, les parois de domaines pourraient être exploitées dans les lignes de transmission optique où elles serviraient à séparer des séquences de bits de valeurs différentes, le 1 logique étant représenté par exemple par une polarisation circulaire droite, et le 0 par la polarisation circulaire orthogonale. Ces parois se propagent sans déformation et, contrairement aux solitons habituellement utilisés pour la transmission par fibre optique, elles conservent une position stable au sein du train de données transmis. Grâce à cette stabilité intrinsèque des parois de domaines, il devient possible de rapprocher des impulsions successives et d'accroître le débit des lignes de transmission, qui pourrait atteindre le Tbit/s en monocanal. Toutefois, les parois de domaines de polarisation n'existent en théorie que dans les fibres isotropes, alors que les fibres réelles sont soumises à de nombreuses perturbations qui les rendent biréfringentes. Dans notre travail, nous avons déterminé les paramètres d'une fibre spéciale qui permette l'observation de parois de domaines dans des conditions réalistes, mais nous n'avons pas réalisé l'expérience car la fibre commandée n'a pas pu être fabriquée.</p>
<p align="justify">Si l'amélioration des performances des systèmes de télécommunications futurs passera nécessairement par l'accroissement des débits d'information en monocanal, elle exigera également la mise au point de dispositifs tout optiques, donc ultra-rapides, destinés au routage et au traitement des signaux transmis. Au-delà des applications en télécommunications, le développement de tels dispositifs provoquerait une véritable révolution photonique : les photons, plus rapides, supplanteraient pour les tâches usuelles les électrons utilisés dans les transistors électroniques. Ces dispositifs photoniques sont généralement basés sur les propriétés particulières résultant de la périodicité intrinsèque des matériaux utilisés. Cette périodicité se traduit par l'existence d'une bande interdit : quand les photons s'y trouvent (on dit alors qu'ils vérifient approximativement la condition de Bragg), ils ne peuvent se propager. Par ailleurs, la transmission de ces dispositifs est contrôlée en exploitant leurs propriétés non linéaires. Dans le cas des fibres, la bande interdite peut être réalisée quasiment sur mesure en imposant une modulation périodique contrôlée de l'indice de réfraction de la fibre. On crée ainsi un réseau de Bragg fibré, dans lequel la lumière subit une forte réflexion quand elle vérifie la condition de Bragg. Pourtant, même dans ces conditions, des impulsions suffisamment intenses appelées solhiatons peuvent encore subsister et se déplacer dans le réseau, les effets non linéaires compensant la réflexion du réseau. Pour observer les solhiatons, il faut toutefois parvenir à plonger immédiatement et complètement les impulsions dans le réseau, sans quoi elles sont irrémédiablement réfléchies par le réseau. Pour y parvenir, nous avons généré un réseau de Bragg dynamique : il se déplace le long de la fibre avec les impulsions. Nous avons constaté le confinement de deux impulsions qui, en l'absence du réseau dynamique, se propageraient à des vitesses différentes en raison de la dispersion chromatique. Ces impulsions devraient en plus se propager sans déformation, mais nous n'avons pas pu l'observer dans nos conditions expérimentales. Ce confinement constitue la première démonstration expérimentale du processus de formation de solhiatons stationnaires. Transposé des fibres aux matériaux semi-conducteurs, le solhiaton pourrait être exploité dans certains types de transistors photoniques. Les perspectives sont ambitieuses de voir un jour les résultats de notre recherche fondamentale contribuer à l'émergence de nouvelles applications.</p>
Identifer | oai:union.ndltd.org:BICfB/oai:ulb.ac.be:ETDULB:ULBetd-07112005-142610 |
Date | 17 January 2003 |
Creators | Van Simaeys, Gaetan |
Contributors | Haelterman, Marc |
Publisher | Universite Libre de Bruxelles |
Source Sets | Bibliothèque interuniversitaire de la Communauté française de Belgique |
Language | French |
Detected Language | French |
Type | text |
Format | application/pdf |
Source | http://theses.ulb.ac.be/ETD-db/collection/available/ULBetd-07112005-142610/ |
Rights | mixed, J'accepte que le texte de la thèse (ci-après l'oeuvre), sous réserve des parties couvertes par la confidentialité, soit publié dans le recueil électronique des thèses ULB. A cette fin, je donne licence à ULB : - le droit de fixer et de reproduire l'oeuvre sur support électronique : logiciel ETD/db - le droit de communiquer l'oeuvre au public Cette licence, gratuite et non exclusive, est valable pour toute la durée de la propriété littéraire et artistique, y compris ses éventuelles prolongations, et pour le monde entier. Je conserve tous les autres droits pour la reproduction et la communication de la thèse, ainsi que le droit de l'utiliser dans de futurs travaux. Je certifie avoir obtenu, conformément à la législation sur le droit d'auteur et aux exigences du droit à l'image, toutes les autorisations nécessaires à la reproduction dans ma thèse d'images, de textes, et/ou de toute oeuvre protégés par le droit d'auteur, et avoir obtenu les autorisations nécessaires à leur communication à des tiers. Au cas où un tiers est titulaire d'un droit de propriété intellectuelle sur tout ou partie de ma thèse, je certifie avoir obtenu son autorisation écrite pour l'exercice des droits mentionnés ci-dessus. |
Page generated in 0.0039 seconds