Spelling suggestions: "subject:"ondas optiques""
1 |
Instabilité, solitons et solhiations. Une approche expérimentale de la dynamique non linéaire en fibres optiquesVan Simaeys, Gaetan 17 January 2003 (has links)
<p align="justify">Il y a un demi siècle, Fermi, Pasta et Ulam découvraient la récurrence du même nom, et créaient une discipline nouvelle, la dynamique non linéaire. Leur expérience numérique consistait à exciter le mode fondamental d'une chaîne d'oscillateurs reliés entre eux par des ressorts linéaires et faiblement non linéaires. Alors qu'ils s'attendaient à ce que l'énergie se répartisse progressivement sur un large spectre en raison du couplage non linéaire, ils observèrent au contraire un échange périodique (récurrent) d'énergie entre quelques-uns des modes d'ordre inférieur uniquement. Dix ans plus tard, des chercheurs ont interprété ce comportement récurrent comme le résultat de l'interaction entre des impulsions qui se propagent sans se déformer et résistent aux collisions entre elles, les solitons. Par la suite, le soliton a émergé dans différents domaines pour finalement occuper le cœur des sciences non linéaires. Et c'est sans doute en optique non linéaire que le soliton a connu ses plus grands succès, tant sur le plan fondamental que sur celui des applications. En particulier, les phénomènes non linéaires sont aisés à observer dans les fibres optiques grâce au large éventail des sources lasers disponibles et en raison du fort confinement de la lumière qui s'y propage.</p>
<p align="justify">Dans notre travail de thèse, nous avons apporté la première démonstration expérimentale de la récurrence de Fermi-Pasta-Ulam dans la dynamique d'instabilité modulationnelle en fibre optique. En effet, une onde continue perturbée évolue spontanément, sous certaines conditions, en un train d'impulsions : l'énergie est transférée du mode fondamental (l'onde continue) aux modes d'ordre supérieur. La théorie prévoit qu'ensuite, l'onde continue initiale se reforme comme l'énergie revient vers le mode fondamental. Pour réaliser cette expérience, il faut parvenir à rencontrer les conditions prescrites par la théorie tout en évitant l'intervention d'effets perturbateurs. Dans ce but, nous avons étudié l'évolution d'impulsions plateaux, qui reproduisent les conditions d'onde continue requises par la théorie tout en permettant d'atteindre des puissances suffisantes pour observer la récurrence.</p>
<p align="justify">Nous nous sommes ensuite intéressés à un nouveau type de soliton appelé paroi de domaines de polarisation, qui se présente comme la structure de commutation entre deux domaines semi-continus de polarisations circulaires orthogonales. En principe, les parois de domaines pourraient être exploitées dans les lignes de transmission optique où elles serviraient à séparer des séquences de bits de valeurs différentes, le 1 logique étant représenté par exemple par une polarisation circulaire droite, et le 0 par la polarisation circulaire orthogonale. Ces parois se propagent sans déformation et, contrairement aux solitons habituellement utilisés pour la transmission par fibre optique, elles conservent une position stable au sein du train de données transmis. Grâce à cette stabilité intrinsèque des parois de domaines, il devient possible de rapprocher des impulsions successives et d'accroître le débit des lignes de transmission, qui pourrait atteindre le Tbit/s en monocanal. Toutefois, les parois de domaines de polarisation n'existent en théorie que dans les fibres isotropes, alors que les fibres réelles sont soumises à de nombreuses perturbations qui les rendent biréfringentes. Dans notre travail, nous avons déterminé les paramètres d'une fibre spéciale qui permette l'observation de parois de domaines dans des conditions réalistes, mais nous n'avons pas réalisé l'expérience car la fibre commandée n'a pas pu être fabriquée.</p>
<p align="justify">Si l'amélioration des performances des systèmes de télécommunications futurs passera nécessairement par l'accroissement des débits d'information en monocanal, elle exigera également la mise au point de dispositifs tout optiques, donc ultra-rapides, destinés au routage et au traitement des signaux transmis. Au-delà des applications en télécommunications, le développement de tels dispositifs provoquerait une véritable révolution photonique : les photons, plus rapides, supplanteraient pour les tâches usuelles les électrons utilisés dans les transistors électroniques. Ces dispositifs photoniques sont généralement basés sur les propriétés particulières résultant de la périodicité intrinsèque des matériaux utilisés. Cette périodicité se traduit par l'existence d'une bande interdit : quand les photons s'y trouvent (on dit alors qu'ils vérifient approximativement la condition de Bragg), ils ne peuvent se propager. Par ailleurs, la transmission de ces dispositifs est contrôlée en exploitant leurs propriétés non linéaires. Dans le cas des fibres, la bande interdite peut être réalisée quasiment sur mesure en imposant une modulation périodique contrôlée de l'indice de réfraction de la fibre. On crée ainsi un réseau de Bragg fibré, dans lequel la lumière subit une forte réflexion quand elle vérifie la condition de Bragg. Pourtant, même dans ces conditions, des impulsions suffisamment intenses appelées solhiatons peuvent encore subsister et se déplacer dans le réseau, les effets non linéaires compensant la réflexion du réseau. Pour observer les solhiatons, il faut toutefois parvenir à plonger immédiatement et complètement les impulsions dans le réseau, sans quoi elles sont irrémédiablement réfléchies par le réseau. Pour y parvenir, nous avons généré un réseau de Bragg dynamique : il se déplace le long de la fibre avec les impulsions. Nous avons constaté le confinement de deux impulsions qui, en l'absence du réseau dynamique, se propageraient à des vitesses différentes en raison de la dispersion chromatique. Ces impulsions devraient en plus se propager sans déformation, mais nous n'avons pas pu l'observer dans nos conditions expérimentales. Ce confinement constitue la première démonstration expérimentale du processus de formation de solhiatons stationnaires. Transposé des fibres aux matériaux semi-conducteurs, le solhiaton pourrait être exploité dans certains types de transistors photoniques. Les perspectives sont ambitieuses de voir un jour les résultats de notre recherche fondamentale contribuer à l'émergence de nouvelles applications.</p>
|
2 |
Experiments for Laser Beam Propagation through Optical Turbulence : Development, Analysis and Applications. / Expériences pour la propagation d’un faisceau laser à travers de turbulence optique : Développement, analyse et applicationsFernandez, Angel 21 June 2016 (has links)
La turbulence atmosphérique générée par une différence de température entre le sol et l'atmosphère, provoque des effets sur les ondes optiques et présente un grand intérêt scientifique depuis de nombreuses années. Les distorsions du front d'onde optique induites par le résultat de la turbulence atmosphérique génèrent un étalement du faisceau au-delà de celles dues à la diffraction pure, à des variations aléatoires de la position du centre de gravité du faisceau, et à une répartition aléatoire de l'énergie du faisceau qui conduit à des fluctuations de l’irradiance.Ces effets ont des conséquences sur les communications optiques en espace libre (OFS), la désignation de cible, le LiDAR hyper spectral, et d'autres applications qui nécessitent la transmission d'ondes optiques dans l'atmosphère sur une grande portée.Tout au long de cette thèse, nous introduisons le concept général de la turbulence, en se concentrant sur la turbulence atmosphérique. Diverses expériences ont été réalisées, par exemple, la propagation de deux faisceaux parallèles dans les conditions de l'optique géométrique pour l'étude des paramètres de turbulence optiques. La même configuration optique a été utilisé pour étudier la meilleure fréquence d'échantillonnage pour la turbulence optique. En outre, nous avons indirectement mesuré l'évapotranspiration de couverts végétaux, pour laquelle nous tenons compte des fluctuations de l'indice de réfraction de la turbulence à travers les variations d’intensités du faisceau laser. Enfin, certaines expériences qui considèrent de nouvelles formes spatiale ou spectrale du faisceau ont également été développées, telles que le saut de mode et un super continuum spectral respectivement, montrant une réduction expérimentale des fluctuations de l'irradiance induite par la turbulence. Ces faisceaux ont une meilleure performance comme émetteur d'informations pour la communication optique en espace libre. / Atmospheric turbulence, generated by a differential temperature between the Earth's surface and the atmosphere, causes effects on optical waves that have been of great interest to scientists for many years. Wave front distortions in the optical wave induced by atmospheric turbulence result in a spreading of the beam beyond that due to pure diffraction, random variations of the position of the beam centroid, and a random redistribution of the beam energy within a cross section of the beam leading to irradiance fluctuations. Those effects have far-reaching consequences on astronomical imaging, free space optics (FSO) communications, remote sensing, laser satellite communication, astronomical imaging, adaptive optics, target designation, hyperspectral LiDAR, and other applications that require the transmission of optical waves through the atmosphere. Throughout this thesis, we introduce a globally concept of turbulence, focusing in atmospheric turbulence.Diverse experiments have been carried out, for instance, the propagation of two parallel thin beams under geometrical optics condition for studying the parameters of optical turbulence, and besides, the same optical configuration was used to investigate the best sampling rate for optical turbulence. Furthermore, we have measured evapotranspiration by remote sensing, in which we have heeded the fluctuations of the refractive index through the intensities of the turbulence. Finally, experiments which involve a new beam are also developed, such as phase-flipped Gaussian beam. This beam shows an experimental reduction on its irradiance fluctuations induced by the turbulence, which means that it has a high performance in optical communications. The experimental reduction aforementioned is proved through the comparison with the theory developed.
|
3 |
Conception et caractérisation de diodes en SiC pour la détermination des coefficients d'ionisationNguyen, Duy Minh 20 June 2011 (has links) (PDF)
Le carbure de silicium (SiC) possède plusieurs propriétés exceptionnelles comme une large bande interdite, un champ électrique critique et une vitesse de saturation des porteurs élevée pour remplacer le silicium (Si) dans des domaines de fonctionnement jusque-là inaccessibles avec le Si. Un nombre important de démonstrateurs des composants de puissance en SiC faisant état de performances remarquables ainsi que la disponibilité commerciale des composants en SiC confirment la maturité de la filière SiC et montrent les progrès technologiques réalisés au cours des dernières années. Cependant, il existe peu d'études sur les coefficients d'ionisation du SiC, lesquels sont pourtant indispensables pour prévoir précisément la tenue en tension des composants de puissance en SiC. Ce travail contribue donc à mieux déterminer ces coefficients. Pour cela, un bon nombre de diodes spécialement conçues pour la détermination des coefficients d'ionisation du SiC par la technique OBIC (Optical Beam Induced Current) ont été réalisées sur différents wafers de SiC-4H et de SiC-6H, deux polytypes courant du SiC. Cette technique repose sur un faisceau de laser ultraviolet qui génère des paires électrons-trous dans la zone de charge d'espace d'une diode sous test. La mesure du courant résultant permet d'accéder aux coefficients d'ionisation. A partir des mesures OBIC sur les diodes réalisées, nous avons pu déduire les coefficients pour ces deux polytypes du SiC. Plus particulièrement, les coefficients d'ionisation du SiC-4H sont déterminés dans une large gamme de champ électrique grâce aux mesures sur les différents dopages. Les paramètres des coefficients déterminés dans ce travail peuvent être utilisés en conception de dispositifs haute tension pour prédire plus précisément l'efficacité de leur protection périphérique.
|
4 |
Instabilité, solitons et solhiatons: une approche expérimentale de la dynamique non linéaire en fibres optiquesVan Simaeys, Gaëtan 17 January 2003 (has links)
<p align="justify">Il y a un demi siècle, Fermi, Pasta et Ulam découvraient la récurrence du même nom, et créaient une discipline nouvelle, la dynamique non linéaire. Leur expérience numérique consistait à exciter le mode fondamental d'une chaîne d'oscillateurs reliés entre eux par des ressorts linéaires et faiblement non linéaires. Alors qu'ils s'attendaient à ce que l'énergie se répartisse progressivement sur un large spectre en raison du couplage non linéaire, ils observèrent au contraire un échange périodique (récurrent) d'énergie entre quelques-uns des modes d'ordre inférieur uniquement. Dix ans plus tard, des chercheurs ont interprété ce comportement récurrent comme le résultat de l'interaction entre des impulsions qui se propagent sans se déformer et résistent aux collisions entre elles, les solitons. Par la suite, le soliton a émergé dans différents domaines pour finalement occuper le cœur des sciences non linéaires. Et c'est sans doute en optique non linéaire que le soliton a connu ses plus grands succès, tant sur le plan fondamental que sur celui des applications. En particulier, les phénomènes non linéaires sont aisés à observer dans les fibres optiques grâce au large éventail des sources lasers disponibles et en raison du fort confinement de la lumière qui s'y propage.</p><p><p align="justify">Dans notre travail de thèse, nous avons apporté la première démonstration expérimentale de la récurrence de Fermi-Pasta-Ulam dans la dynamique d'instabilité modulationnelle en fibre optique. En effet, une onde continue perturbée évolue spontanément, sous certaines conditions, en un train d'impulsions :l'énergie est transférée du mode fondamental (l'onde continue) aux modes d'ordre supérieur. La théorie prévoit qu'ensuite, l'onde continue initiale se reforme comme l'énergie revient vers le mode fondamental. Pour réaliser cette expérience, il faut parvenir à rencontrer les conditions prescrites par la théorie tout en évitant l'intervention d'effets perturbateurs. Dans ce but, nous avons étudié l'évolution d'impulsions plateaux, qui reproduisent les conditions d'onde continue requises par la théorie tout en permettant d'atteindre des puissances suffisantes pour observer la récurrence.</p><p><p align="justify">Nous nous sommes ensuite intéressés à un nouveau type de soliton appelé paroi de domaines de polarisation, qui se présente comme la structure de commutation entre deux domaines semi-continus de polarisations circulaires orthogonales. En principe, les parois de domaines pourraient être exploitées dans les lignes de transmission optique où elles serviraient à séparer des séquences de bits de valeurs différentes, le 1 logique étant représenté par exemple par une polarisation circulaire droite, et le 0 par la polarisation circulaire orthogonale. Ces parois se propagent sans déformation et, contrairement aux solitons habituellement utilisés pour la transmission par fibre optique, elles conservent une position stable au sein du train de données transmis. Grâce à cette stabilité intrinsèque des parois de domaines, il devient possible de rapprocher des impulsions successives et d'accroître le débit des lignes de transmission, qui pourrait atteindre le Tbit/s en monocanal. Toutefois, les parois de domaines de polarisation n'existent en théorie que dans les fibres isotropes, alors que les fibres réelles sont soumises à de nombreuses perturbations qui les rendent biréfringentes. Dans notre travail, nous avons déterminé les paramètres d'une fibre spéciale qui permette l'observation de parois de domaines dans des conditions réalistes, mais nous n'avons pas réalisé l'expérience car la fibre commandée n'a pas pu être fabriquée.</p><p><p align="justify">Si l'amélioration des performances des systèmes de télécommunications futurs passera nécessairement par l'accroissement des débits d'information en monocanal, elle exigera également la mise au point de dispositifs tout optiques, donc ultra-rapides, destinés au routage et au traitement des signaux transmis. Au-delà des applications en télécommunications, le développement de tels dispositifs provoquerait une véritable révolution photonique :les photons, plus rapides, supplanteraient pour les tâches usuelles les électrons utilisés dans les transistors électroniques. Ces dispositifs photoniques sont généralement basés sur les propriétés particulières résultant de la périodicité intrinsèque des matériaux utilisés. Cette périodicité se traduit par l'existence d'une bande interdit :quand les photons s'y trouvent (on dit alors qu'ils vérifient approximativement la condition de Bragg), ils ne peuvent se propager. Par ailleurs, la transmission de ces dispositifs est contrôlée en exploitant leurs propriétés non linéaires. Dans le cas des fibres, la bande interdite peut être réalisée quasiment sur mesure en imposant une modulation périodique contrôlée de l'indice de réfraction de la fibre. On crée ainsi un réseau de Bragg fibré, dans lequel la lumière subit une forte réflexion quand elle vérifie la condition de Bragg. Pourtant, même dans ces conditions, des impulsions suffisamment intenses appelées solhiatons peuvent encore subsister et se déplacer dans le réseau, les effets non linéaires compensant la réflexion du réseau. Pour observer les solhiatons, il faut toutefois parvenir à plonger immédiatement et complètement les impulsions dans le réseau, sans quoi elles sont irrémédiablement réfléchies par le réseau. Pour y parvenir, nous avons généré un réseau de Bragg dynamique :il se déplace le long de la fibre avec les impulsions. Nous avons constaté le confinement de deux impulsions qui, en l'absence du réseau dynamique, se propageraient à des vitesses différentes en raison de la dispersion chromatique. Ces impulsions devraient en plus se propager sans déformation, mais nous n'avons pas pu l'observer dans nos conditions expérimentales. Ce confinement constitue la première démonstration expérimentale du processus de formation de solhiatons stationnaires. Transposé des fibres aux matériaux semi-conducteurs, le solhiaton pourrait être exploité dans certains types de transistors photoniques. Les perspectives sont ambitieuses de voir un jour les résultats de notre recherche fondamentale contribuer à l'émergence de nouvelles applications.</p><p><p> / Doctorat en sciences appliquées / info:eu-repo/semantics/nonPublished
|
5 |
Conception et caractérisation de diodes en SiC pour la détermination des coefficients d'ionisation / Design and characterization of SiC diodes for the determination of ionization coefficientsNguyen, Duy Minh 20 June 2011 (has links)
Le carbure de silicium (SiC) possède plusieurs propriétés exceptionnelles comme une large bande interdite, un champ électrique critique et une vitesse de saturation des porteurs élevée pour remplacer le silicium (Si) dans des domaines de fonctionnement jusque-là inaccessibles avec le Si. Un nombre important de démonstrateurs des composants de puissance en SiC faisant état de performances remarquables ainsi que la disponibilité commerciale des composants en SiC confirment la maturité de la filière SiC et montrent les progrès technologiques réalisés au cours des dernières années. Cependant, il existe peu d’études sur les coefficients d’ionisation du SiC, lesquels sont pourtant indispensables pour prévoir précisément la tenue en tension des composants de puissance en SiC. Ce travail contribue donc à mieux déterminer ces coefficients. Pour cela, un bon nombre de diodes spécialement conçues pour la détermination des coefficients d’ionisation du SiC par la technique OBIC (Optical Beam Induced Current) ont été réalisées sur différents wafers de SiC-4H et de SiC-6H, deux polytypes courant du SiC. Cette technique repose sur un faisceau de laser ultraviolet qui génère des paires électrons-trous dans la zone de charge d’espace d’une diode sous test. La mesure du courant résultant permet d’accéder aux coefficients d’ionisation. A partir des mesures OBIC sur les diodes réalisées, nous avons pu déduire les coefficients pour ces deux polytypes du SiC. Plus particulièrement, les coefficients d’ionisation du SiC-4H sont déterminés dans une large gamme de champ électrique grâce aux mesures sur les différents dopages. Les paramètres des coefficients déterminés dans ce travail peuvent être utilisés en conception de dispositifs haute tension pour prédire plus précisément l’efficacité de leur protection périphérique. / Silicon carbide (SiC) has several exceptional properties as a wide band-gap, a high critical electric field and a high saturation velocity of carriers to replace silicon (Si) in the applications previously inaccessible with Si. A significant number of SiC power devices showing outstanding performances and the commercial availability of SiC devices confirm the maturity of SiC industry and show the SiC technological advances in recent years. However, there are few studies on the ionization coefficients in SiC, which nevertheless essential to accurately predict the breakdown voltage of SiC power devices. This work contributes to better determine these coefficients. For this, numerous diodes which are specifically designed for the determination of ionization coefficients in SiC by using OBIC (Optical Beam Induced Current) technique were realized on different wafers of 4H-SiC and 6H-SiC, two usual polytypes of SiC. This technique relies on an ultraviolet laser beam which generates electron-hole pairs in the space charge region of a diode under test. The resulting current measurement provides access to the ionization coefficients. From OBIC measurements performed on the diodes, we were able to deduce the ionization coefficients for the both polytypes of SiC. In particular, the ionization coefficients for 4H-SiC are determined in a wide range of electric field through measurements on devices with different doping level. The parameters of ionization coefficients determined in this work can be used in design of high voltage devices to predict more accurately the efficiency of periphery protections.
|
Page generated in 0.0621 seconds