Return to search

Conception robuste en vibration et aéroélasticité des roues aubagées de turbomachines / Robust design in vibration and aeroelasticity of turbomachinery bladed disks

Les roues aubagées sont des composants dont le comportement dynamique est très sensible au désaccordage involontaire causé par les tolérances de fabrication qui rendent les aubes légèrement différentes les unes des autres. Cette sensibilité se traduit généralement par une amplification des vibrations. L’objectif de ce travail de recherche est de proposer de nouvelles méthodologies permettant d’optimiser la conception en vibration des roues aubagées vis à vis du désaccordage involontaire. L’optimisation est faite pour la réponse forcée et sous une contrainte de marge à la stabilité aéroélastique. Dans ce contexte, le désaccordage intentionnel par modification géométrique des aubes est utilisé. Pour réduire les temps de calcul, une nouvelle méthode de réduction de modèles de roues aubagées désaccordées intentionnellement par modification géométrique est développée et validée. La modélisation des incertitudes incluant le désaccordage involontaire, est faite avec une approche probabiliste non paramétrique. Une application à l’optimisation de la conception en vibration d’une roue réelle a finalement été effectuée en deux phases : (1) une optimisation de la répartition des différentes aubes désaccordées intentionnellement sur la roue aubagée et (2) une optimisation du niveau de modification géométrique de ces aubes. Les résultats montrent qu’une conception robuste par désaccordage intentionnel de la roue aubagée a été effectuée / Bladed disks are components which dynamic behaviour are very sensitive to mistuning induced by the manufacturing process which makes blades differ from one another. This sensitivity increases in general the vibrations. The objective of this research is to propose new methods for optimizing design in vibration of bladed disks with respect to mistuning. Optimization is done for the forced response while keeping a sufficient aeroelastic stability margin. In this context, detuning by modifying geometrically the blades’ shapes is used. To reduce numerical computational costs, a new reduction method for geometrically detuned bladed disks is developed and validate. Uncertainties modeling including mistuning is done with a non-parametric probabilistic approach. An application by optimizing the design in vibration of a realistic bladed disk is finally done in two steps : (1) An optimization of the different detuned blades arrangements around the disk and (2) an optimization of the geometric modification level of blades. The results show that a robust design of the bladed disks has been done using geometric detuning

Identiferoai:union.ndltd.org:theses.fr/2009PEST1068
Date03 November 2009
CreatorsMbaye, Moustapha
ContributorsParis Est, Soize, Christian
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0024 seconds