Unknown wireless devices that use receiver architectures with a mixer may be detected and located using stimulated emissions. Transmitting a known stimulation signal and correlating leaked mixer products allows measurement of the TOF and thus range. The FRFT improves the detection of the stimulated emissions by compressing the energy of the stimulated emissions to a single axis value. The stimulation signal has many parameters that may be optimized for maximum detection distance or minimum range error or somewhere in between. The primary limiting factor for the parameters is the processing time, as the algorithm to compute the discrete FRFT is computationally intensive at the time of this report. The tests performed in this investigation achieved 45+meters detection distance with < 3 meters of range error, with potential for farther detection distance.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-128931 |
Date | January 2013 |
Creators | Gustafsson, Per |
Publisher | KTH, Skolan för informations- och kommunikationsteknik (ICT) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Trita-ICT-EX ; 2013:174 |
Page generated in 0.0019 seconds