<p>The aim of this pro ject was to evaluate the use of SIMD array architectures in radar </p><p>signal processing. This has been done by implementing one of the most demanding parts </p><p>of the radar signal processing chain for airborne radar on the CSX600 architecture devel- </p><p>oped by Clearspeed Technologies. The CSX600 architecture is a SIMD processor with 96 </p><p>processing elements which can be arranged either as a linera array or as a ring. The QR- </p><p>decomposition, which was the part chosen for implementation, is the most performance </p><p>demanding part of the STAP stage. In order to create a relevant test case the well known </p><p>RT STAP benchmark from Mitre Corporation has been used. Two different algorithms </p><p>for performing QR-decompositions have been implemented and verified. In both cases </p><p>it has been concluded that either longer (> </p><p>≈256) or shorter (< ≈32) processor array </p><p>lengths would, in general, yield a higher utilization ratio. The FLOP count and utiliza- </p><p>tion has been measured for both algorithms, and it has been concluded that at least eight </p><p>CSX600 processors are needed to meet the real-time demand of the benchmark.</p>
Identifer | oai:union.ndltd.org:UPSALLA/oai:DiVA.org:hh-284 |
Date | January 2006 |
Creators | Ekström, Mikael, Westerberg, Martin |
Publisher | Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Högskolan i Halmstad/Sektionen för Informationsvetenskap, Data- och Elektroteknik (IDE) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, text |
Page generated in 0.0012 seconds