Return to search

Numerical Simulation Of Radiating Flows

Predictive accuracy of the previously developed coupled code for the solution of the time-dependent Navier-Stokes equations in conjunction with the radiative transfer equation was first assessed by applying it to the prediction of thermally radiating, hydrodynamically developed laminar pipe flow for which the numerical solution had been reported in the literature. The effect of radiation on flow and temperature fields was demonstrated for different values of conduction to radiation ratio. It was found that the steady-state temperature predictions of the code agree well with the benchmark solution.

In an attempt to test the predictive accuracy of the coupled code for turbulent radiating flows, it was applied to fully developed turbulent flow of a hot gas through a relatively cold pipe and the results were compared with the numerical solution available in the literature. The code was found to mimic the reported steady-state temperature profiles well.

Having validated the predictive accuracy of the coupled code for steady, laminar/turbulent, radiating pipe flows, the performance of the code for transient radiating flows was tested by applying it to a test problem involving laminar/turbulent flow of carbon dioxide through a circular pipe for the simulation of simultaneous hydrodynamic and thermal development. The transient solutions for temperature, velocity and radiative energy source term fields were found to demonstrate the physically expected trends.
In order to improve the performance of the code, a parallel algorithm of the code was developed and tested against sequential code for speed up and efficiency. It was found that the same results are obtained with a reasonably high speed-up and efficiency.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12606452/index.pdf
Date01 August 2005
CreatorsKaraismail, Ertan
ContributorsSelcuk, Nevin
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypeM.S. Thesis
Formattext/pdf
RightsTo liberate the content for public access

Page generated in 0.0022 seconds