La radiothérapie externe représente une part importante du traitement conservateur du sein. Le calendrier classique consiste à délivrer une dose totale de 50 Gy en 25 fractions sur 5 semaines. Pour certaines catégories de femmes, une radiothérapie de 5 à 6 semaines, avec des transports longs et fréquents est parfois difficile à réaliser. La radiothérapie peropératoire (RIOP) permet de prévenir le risque de récidive locale dans le lit tumoral, et ne nécessite que quelques jours d’hospitalisation. Cette étude se concentre sur l’utilisation d'une source de rayons X miniaturisée de faible énergie (50kV). Après résection chirurgicale de la tumeur, un applicateur est inséré dans le lit tumoral et le système délivre une dose unique de 20 Gy à sa surface. Cependant, il n'y a pas de prescription personnalisée ni d'information sur la dose délivrée et ce point est contestable, car un texte officiel recommande une optimisation de la dose individuelle. Dans ce contexte, un calcul Monte Carlo permet d'évaluer avec précision la dose délivrée à la patiente en simulant le transport des particules. Cette thèse propose d'évaluer ce critère de dose absorbée le plus justement possible à partir d'une modélisation réaliste de la source de rayons X et de calculs de dose individuels à l'aide de simulations de Monte Carlo en prenant en compte les hétérogénéités tissulaires du sein. Des mesures dosimétriques in vivo viennent également confirmer les résultats de simulations. / External radiation therapy is an important part of breast conservative treatment. The conventional calendar is to deliver a total dose of 50 Gy in 25 fractions over 5 weeks. For certain categories of women, 5 to 6 weeks of radiotherapy, with long and frequent transport is sometimes difficult to achieve. Intra-operative radiotherapy (IORT) helps to prevent the risk of local recurrence in the tumor bed, and only requires a few days of hospitalization. This study focuses on the use of a miniaturized low energy X-ray source (50kV). After surgical resection of the tumor, an applicator is inserted into the tumor bed and the system delivers a single dose of 20 Gy on its surface. However, there is no custom prescription and this is questionable since an official text recommends optimizing the individual dose. In this context, a Monte Carlo calculation makes it possible to accurately assess the dose delivered to the patient by simulating the transport of particles. This thesis proposes to assess the absorbed dose criterion as accurately as possible from a realistic model of the X-ray source and individual dose calculations using Monte Carlo simulations taking into account the tissue heterogeneities of the breast. In vivo dosimetric measurements also confirm the results of simulations.
Identifer | oai:union.ndltd.org:theses.fr/2015BRES0065 |
Date | 20 November 2015 |
Creators | Bouzid, Dounia |
Contributors | Brest, Pradier, Olivier |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0023 seconds