The Heating, Ventilation and Air Conditioning (HVAC) systems are nowadays in almost every new building, develop or improve better control strategies for them is very common, looking to have more energy efficiency and require less input parameters from the user. In this project, new control strategies based in previous theory models has been used with a new approach in order to find a good solution for irregular occupied spaces. In this new approach a feed-forward filter with a fixed preheating time, using an algorithm based on an identified model, calculates how much degrees the temperature room can be decreased and regulate the power of the radiators to do it.The results of this project displays that the chosen model have to be changed but the idea is interesting, because the simulations of the reference building give, with a preheating timeof 2 hours, around 3ºC of temperature reduction during 18 days and savings of 33% of the heat energy needed for the whole month.Considering that buildings and the residential sector currently account for 40 percent of Sweden's energy consumption and around 25 percent of other countries like USA or Spain, and that irregular spaces are more or less a 10% of the governmental, institutional, academic or public buildings, the potential savings are not negligible. The evaluation of this control strategy with its mathematical model as well as its resultsduring the month of January and the behavior of the system along the year have been made with the help of IDA program for simulation of the reference building and its energy system.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:hig-15155 |
Date | January 2013 |
Creators | Sanz Aceituno, Angel Luis |
Publisher | Högskolan i Gävle, Avdelningen för bygg- energi- och miljöteknik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds