The objective of the proposed research is to understand the design and reliability of RF front-end building blocks using SOI CMOS and SiGe BiCMOS technologies for high dynamic-range applications. This research leads to a comprehensive understanding of dynamic range in SOI CMOS devices and contributes to knowledge leading to improvement in overall dynamic range and reliability of RF building blocks. While the performance of CMOS transistors has been improving naturally with scaling, this work aims to explore the possibilities of improvement in RF performance and reliability using standard layouts (that don't need process modifications). The total-ionizing dose tolerance of SOI CMOS devices has been understood with extensive measurements. Furthermore, the role of body contacts in SOI technology is understood for dynamic range performance improvement. In this work, CMOS low-noise amplifier design for high linearity WLAN applications and its integration with RF switch on the same chip is presented. The LNA and switches designed provide state-of-the-art performance in silicon based technologies. Further, the work aims to explore applications of SiGe HBT in the context of highly linear and reliable RF building blocks. The RF reliability of SiGe HBT based RF switches is investigated and compared with CMOS counterparts. The inverse-mode operation of SiGe HBT based switches is understood to give considerably higher linearity.
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/45853 |
Date | 11 October 2011 |
Creators | Madan, Anuj |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Detected Language | English |
Type | Dissertation |
Page generated in 0.0018 seconds