Return to search

Utilizing Animal Waste Amendments to Impaired Rangeland Soils to Reduce Runoff

Composted biological wastes contain vital plant nutrients that assist in plant growth as well as contain organic matter that promotes good soil conditions; both aid in rangeland restoration. Most importantly, it has the potential to restore water availability through increased infiltration and reduced runoff. In this thesis, local sources of composted dairy manure are utilized for application onto the degraded Fort Hood Western Training Grounds in central Texas in hopes to restore the rangeland for continued military training. Small scale rainfall simulations are applied two and eight months post-application of seven different agronomic rates of composted waste treatment (0, 5, 10, 15, 20, 25, and 30
y^3/acre) in order to determine changes in infiltration rates.

July 2004 rainfall simulations, two months post application, indicate that composted wastes have not had sufficient time to incorporate into the soil matrix. Percent organic matter of the parent soil is the only significant variable of impact on maximum infiltration capacity. Composted waste treatments are concluded to have no effect on infiltration rates for any of the application rates in the summer rainfall simulations and are observed to exhibit very high variability in the amount of infiltration by a plot.

January 2005 rainfall simulations, eight months post waste application, are observed to continue the trend of high variability across all treatment application rates. This variability is attributed to masking any potential effects from the treatment applications. Overall, this high natural variability disables the detection of potential effects of waste application treatments leading to the conclusion that composted waste applications do not affect infiltration on the Fort Hood Western Training Grounds. Runoff nutrient analysis observed nitrate-N to be well below Texas drinking water standards for all plots and phosphate to be above non-standardized values known to cause problematic algal growth. Natural rainfall events at intensities needed to generate runoff observed in this study are rare; therefore, nutrient pollution concern for local water bodies is low.

Identiferoai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/ETD-TAMU-2011-05-9081
Date2011 May 1900
CreatorsThomas, Diana M.
ContributorsWilcox, Bradford
Source SetsTexas A and M University
Languageen_US
Detected LanguageEnglish
Typethesis, text
Formatapplication/pdf

Page generated in 0.0018 seconds