Return to search

Uso de cortes canonicos no metodo de ramificação local para problemas inteiros 0-1 mistos / Use of canonical cuts in the local branching method for mixed 0-1 integer

Orientador: Cid Carvalho de Souza / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação / Made available in DSpace on 2018-08-08T14:02:44Z (GMT). No. of bitstreams: 1
Santos_RafaelFranciscodos_M.pdf: 909075 bytes, checksum: b4d466696cb4f640a50eca288dfccd5c (MD5)
Previous issue date: 2006 / Resumo: Nesta dissertação propomos um uso mais geral dos Cortes Canônicos (CCs) introduzidos por Balas e Jeroslow ([2]) no método de Ramificação Local (RamLoc) de Fischetti e Lodi ([6]). A ramificação local é uma heurística de propósito geral para Programação Inteira Mista (MIP) que explora vizinhanças definidas através da adição de inequações lineares ao modelo original. Estas inequações determinam subproblemas que são computados mais rapidamente pelos resolvedores de MIP. Uma análise da execução da RamLoc indicou que, em algumas situações, ela acrescenta cortes de ramificação local muito superficiais (i.e.,que descartam poucas soluções) e que estes cortes ocorrem com grande freqüência. Como os cortes de ramificações locais de Fischetti e Lodi são casos especiais dos CCs para programação inteira 0?1, n'os propomos a incorporação de CCs mais profundos (i.e.,que descartam mais soluções) à RamLoc. Executamos o algoritmo resultante sobre 25 das 29 instâncias testadas em [6] e obtivemos melhores resultados do aqueles alcançado pela RamLoc original e pelo resolvedor comercial de MIP XPRESS com seus parâmetros default. Uma outra investigação que empreendemos foi a inclusão dos CCs na heurística para modelos gerais de programação inteira mista RINS ([3]). Esta heurística surgiu durante o desenvolvimento desta dissertação e apresentou um bom desempenho. Realizamos alguns testes com as mesmas instâncias sobre as quais a RamLoc foi executada e obtivemos resultados promissores. Por fim, além da utilização dos CCs em heurísticas, criamos uma estratégia de ramificação que pode ser embutida nos algoritmos de branch-and-cut dos resolvedores de MIP. Denominamos esta estratégia de dive branching e a implementamos no resolvedor XPRESS. Em experimentos conduzidos com o mesmo conjunto de instâncias anteriores, obtivemos resultados de melhor qualidade do que aqueles produzidos pelo XPRESS com seus parâmetros default / Abstract: In this dissertation we propose a broader usage of the Canonical Cuts (CC) introduced by Balas and Jeroslow ([2]) in the Local Branching method (LB) of Fischetti and Lodi ([6]). The LB is a general purpose heuristic for Mixed Integer Programming (MIP) that explores neighborhoods defined by the addition of linear inequalities to the original model. These inequalities determine subproblems that are computed more quickly by MIP solvers. An analysis of the execution of LB indicated that, in some situations, it adds local branching cuts that are too superficial (i.e., chopping off few solutions) and that these cuts happen very often. Since the local branching cuts of Fischetti and Lodi are special cases of CCs for 0?1 integer programming, we propose to incorporate deeper CCs (i.e, chopping of more solutions) to LB. We executed the resulting algorithm on 25 out of the 29 instances tested in [6] and we obtained better results than those attained by the original LB and by the XPRESS commercial MIP solver under default settings. Another research that we carried out was the inclusion of CC to the RINS heuristics for general mixed integer programs ([3]). This heuristic appeared during the development of this dissertation and showed a good performance. We carried out some tests with the same instances on which LB was tested and the results are promising. Finally, besides using the CCs in heuristics, we created a branching strategy that can be embedded to the branch-and-cut algorithms of the MIP solvers. We called it dive branching and implemented it in the XPRESS solver. In experiments with the same set of instances as before, we obtained results of better quality than those produced by XPRESS with default settings / Mestrado / Mestre em Ciência da Computação

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.unicamp.br:REPOSIP/276254
Date21 December 2006
CreatorsSantos, Rafael Francisco dos
ContributorsUNIVERSIDADE ESTADUAL DE CAMPINAS, Souza, Cid Carvalho de, 1963-, Armentano, Vinícius Amaral, Lee, Orlando
Publisher[s.n.], Universidade Estadual de Campinas. Instituto de Computação, Programa de Pós-Graduação em Ciência da Computação
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Format56f. : il., application/octet-stream
Sourcereponame:Repositório Institucional da Unicamp, instname:Universidade Estadual de Campinas, instacron:UNICAMP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0026 seconds