As the demand for wireless communication systems has exploded over the past few years, many researchers have taken on the challenge to model wireless channels more accurately. These models are very useful for enhancing the design of all aspects of wireless communications. Smart antennas and systems used in position location are among the most popular new studies that require signal information such as the amplitude, phase, and angle-of-arrival (AOA) of multipath delay spreads. For proper and efficient implementation of future systems, emerging wireless systems must be able to exploit processing of spatial information. The goal of the work presented in this thesis is to further improve two channel modeling tools, SMRCIM and SIRCIM, by implementing new geometrical models that provide users with angle-of-arrival information as well as amplitude and phase data for wideband wireless communication channels. The new angle-of-arrival models are explained and pseudo code is provided to demonstrate the software implementation of the models. Likewise, the channel models are explained and the usage and results of the simulation tools are described. The SMRCIM and SIRCIM tools are currently being used by researchers throughout the world.
<i>[Vita removed March 5, 2012. Gmc]</i> / Master of Science
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/35989 |
Date | 11 August 1999 |
Creators | Nuckols, John Eric |
Contributors | Electrical and Computer Engineering, Pratt, Timothy J., Johnson, Lee W., Rappaport, Theodore S. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Language | English |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Relation | JENuckolsetd.pdf |
Page generated in 0.002 seconds