Return to search

Persistence and Foliation Theory and their Application to Geometric Singular Perturbation

Persistence problem of compact invariant manifold under random perturbation is considered in this dissertation. Under uniformly small random perturbation and the condition of normal hyperbolicity, the original invariant manifold persists and becomes a random invariant manifold. The random counterpart has random local stable and unstable manifolds. They could be invariantly foliated thanks to the normal hyperbolicity. Those underlie an extension of the geometric singular perturbation theory to the random case which means the slow manifold persists and becomes a random manifold so that the local global structure near the slow manifold persists under singular perturbation. A normal form for a random differential equation is obtained and this helps to prove a random version of the exchange lemma.

Identiferoai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-4583
Date14 June 2012
CreatorsLi, Ji
PublisherBYU ScholarsArchive
Source SetsBrigham Young University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations
Rightshttp://lib.byu.edu/about/copyright/

Page generated in 0.0072 seconds