Return to search

Drain water heat recovery in a residential building

Numerous of energy saving measures have been carried out in the Swedishhousing stock since the energy crisis in the 70’s. Additionally, there have been manylow-energy housing projects. However, so far few of these have been followed up aftersome years in operation concerning the energy use. That the energy use stays on a lowlevel is important from a sustainable perspective. The objectives of this study are find a system capable of reduce energy demandand minimize the environmental impact, make the minimum investment with themaximum results and maintain the actual infrastructure of the building. This report looks into the potential for saving energy and money with greywastewater. This potential depends on both the quantity available and whether thequality fits the requirement of the heating load. To recover heat from waste water inresidential buildings is hard to achieve in quality because of its low temperature range.Nevertheless, efforts to recycle this waste energy could result in significant energysavings. To implement this system the method used is to gather all the information aboutthis system, compare all the options available and calculate how much energy can besaved and how much time is the payback. The building studied is on Maskinisten Brynäs in Gävle with 23 apartments onfive different floors and a total living area of 400 m2 in each floor. In the case building used in this report the 60% of the total water used is hotwater. Installing a heat recovery system can be saved up to 23% of the energy used forheating water. This energy can be used for the preheating of the hot water. In this report is given two different solutions to save energy with this systems,the first one is to use a heat exchanger only in the drain of the showers saving up to7.045 MWh or using a centralized heat exchanger saving up to 23.16 MWh. After analysing the results the best option is to use the centralized heatexchanger system, it can be saved more energy and the total investment is lower thanusing a heat exchanger in each shower.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:hig-19864
Date January 2015
CreatorsGavilán del Amo, Asier, Alonso Lopez, Ana
PublisherHögskolan i Gävle, Avdelningen för bygg- energi- och miljöteknik, Högskolan i Gävle, Avdelningen för bygg- energi- och miljöteknik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0018 seconds