Return to search

Caractérisation de la susceptibilité électromagnétique des étages d'entrée de composants électroniques / Electromagnetic susceptibility characterization of the input stages of electronic devices

Le travail de recherche présenté dans ce manuscrit contribue à une étude générale de la susceptibilité électromagnétique (EM) d'un transistor MOS (Metal Oxide Semiconductor) dans une gamme de fréquences allant de 10 MHz à 1 GHz. Ce composant est destiné à un usage général pour des applications analogiques et numériques. Le but principal de ce travail est d'apporter une compréhension fine des mécanismes physiques mis en jeu au sein du composant lorsque ce dernier est soumis à une agression EM injectée en mode conduit au niveau de sa grille. Notre étude porte sur l'élaboration d'un modèle physique, essentiellement basé sur les variations de charges au sein du composant électronique. Cette approche permet à la fois de comprendre le fonctionnement nominal du transistor et la modification de son comportement lors d'un dysfonctionnement. En effet, la compréhension des mécanismes physiques mis en jeu est la base de la compréhension de la susceptibilité EM. Pour mettre en œuvre ce type d'approche, nous avons choisi d'étudier un type de susceptibilité correspondant à la modification de son point de fonctionnement sous agression EM. Cette modification du point de fonctionnement peut induire un dysfonctionnement du circuit dans lequel est implanté le transistor. Le phénomène physique à l'origine duquel les signaux parasites EM modifient le point de fonctionnement d'un composant électronique est le phénomène de redressement. Ce phénomène apparaît lorsqu'une distorsion est créée au sein du composant. C'est aussi pourquoi les non-linéarités du dispositif sont directement responsables de son observation. Ainsi, pour comprendre finement et physiquement l'effet induit par une agression EM, il est nécessaire de mettre en place une méthode d'étude. Celle-ci est basée sur une mesure des formes d'onde des courants à tous les accès du transistor. En effet, la visualisation de ces courants renseigne sur l'évolution des charges au sein de la structure. De plus, une telle mesure donne accès à une large palette d'observables (valeurs moyennes des courants, distorsions des courants, valeurs crêtes des courants, etc..). Dans un premier temps, les différentes mesures des formes d'onde des courants ont été réalisées lorsqu'une impulsion de tension était appliquée sur la grille du composant avec des temps de montée variables et choisis par rapport au temps de réponse du transistor. Cela nous a permis d'approfondir la compréhension du fonctionnement transitoire fort signal du MOSFET. Dans un second temps, nous avons mesuré les courants lors de l'application d'un signal EM à la grille du composant. En support à ces mesures nous avons utilisé deux outils de calcul : analytique et numérique. La méthode analytique permet la prédiction et l'identification des grandeurs du composant mises en jeu dans le mécanisme de la modification du comportement du transistor. La méthode numérique par simulation électrique permet, quant à elle, de prédire les effets de l'agression EM. Une étape de caractérisation statique et dynamique du composant a également été nécessaire pour enrichir la compréhension des phénomènes observés et fournir les entrées au modèle. / The research work presented here contributes to an overall study of the electromagnetic (EM) susceptibility of Metal Oxide Semiconductor Field Effect Transistors (MOSFET's), in a frequency range from 10 MHz to 1 GHz. This device is used for general purpose: analog and digital applications. The main aim of this study is to provide a detailed understanding of the physical mechanisms involved in the device when the Radio-Frequency (RF) interference is superimposed on the gate terminal. Our study focuses on the development of a physical model, based essentially on the charge variations within the electronic device. This approach allows to understand its behavior with and without the RF interference. Indeed, the knowledge of the involved physical mechanisms is the basic understanding of EM susceptibility. When RF interference is superimposed on the MOSFET terminals, various susceptibility effects take place depending on RF power level, frequency and the transistor operation region. Due to the nonlinearity of the MOS current-voltage characteristics, RF excitations cause distorted drain current waveform which leads to a bias point shift. This modification of the average drain current is called rectification effect. So we developed a method to clearly understand the effect induced by the EM interference. This method is based on the measurement of the currents waveforms to all of the transistor access. In fact, these currents waveforms measurements give us information on the charge variations within the electronic device. Moreover, such a measurement provides access to a wide range of current information (average values, distortion, peak values, etc.). Initially, the different currents waveforms measurements were made when a voltage ramp was applied to the device gate with variable rise time in respect to the transistor response time. This allowed us to understand the large signal transient response of the MOSFET. Secondly, we measured the currents waveforms when an EM interference was injected to the gate terminal. In support of these measurements we used two computation tools: analytical and numerical. The analytical method allows prediction and identification of the quantities of the device involved in the modification of transistor's behavior. The numerical method allows electrical simulation to predict the effects of EM aggression. A static and dynamic characterization of the component was also necessary to understand the observed phenomenon and provide data to the electrical model.

Identiferoai:union.ndltd.org:theses.fr/2015MONTS064
Date09 December 2015
CreatorsPouant, Clovis
ContributorsMontpellier, Jarrix, Sylvie
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0032 seconds