Nesse trabalho, estudamos o método do referencial móvel e sistemas diferenciais exteriores. Estabelecemos resultados de Geometria Riemanniana via referenciais móveis e com essa linguagem introduzimos o Teorema de Gauss-Bonnet-Chern e apresentamos uma adaptação da demonstração original de S.-S. Chern presente no artigo A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds. Ao abordar aspectos da teoria de Cartan-Kähler, codificamos as ideias oriundas dos referenciais móveis em sistemas diferenciais exteriores e mostramos algumas aplicações à Geometria Riemanniana. / In this work, we study the method of moving frame and exterior differential systems. We set up results of Riemannian Geometry via moving frames and with this language we introduce the Gauss-Bonnet-Chern Theorem and present an adaptation of the original proof of S.-S. Chern in the article A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds. In discussing aspects of Cartan-Kählers theory, we encode the ideas from moving frames into exterior differential systems and use this tool in Riemannian Geometry.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-01102019-180403 |
Date | 19 July 2019 |
Creators | Alcantara, Carlos Henrique Silva |
Contributors | Gorodski, Claudio |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | English |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0019 seconds