Made available in DSpace on 2017-07-21T18:53:14Z (GMT). No. of bitstreams: 1
Elisangela Serenato.pdf: 1216828 bytes, checksum: 1e4a058b95c9b4cbdc1c0a22185ded54 (MD5)
Previous issue date: 2010-02-25 / Fundação Araucária de Apoio ao Desenvolvimento Científico e Tecnológico do Paraná / Ricotta is a kind of fresh cheese, obtained by the precipitation of the proteins in the cheese whey. According to the current legislation, ricotta is framed on standards of identity and quality of low-fat cheeses, however, studies show a great variability on the centesimal composition. It justifies the necessity of establishing quality standards, and the development of methodologies that allow a fast and efficient control of the product. Besides it, conventional methodologies used to determine the centesimal composition of the ricotta, though they are part of the routine analysis in laboratories of quality control, they are onerous, time consuming and generate residues. In this sense, the objective of this study was to develop a method for the quantification of physical/chemical standards, using Near Infrared Diffuse Spectroscopy (NIRRS), associating to methods of multivariate calibration. For the construction of multivariate models (specially PLSR) it were used the media of concentration of acidity, carbohydrates, ashes, chlorides, fat, pH, protein and moisture, obtained by conventional methodologies (titration method, spectroscopic, muffle carbonization, titration, Gerber, potentiometric, Kjeldahl and gravimetric method, respectively), as well as data of the near infrared spectroscopy. It was collected spectra in duplicate, 33 spectra were used for the calibration phase, and the 5 remaining used to the external validation phase. The best results for fat, protein and moisture levels were obtained on the spectral region between 1100 to 2500 nm. The optimized model for determination of fat used the Multiplicative Scatter Correction (MSC), with 6 latent variable (VLs), acquiring correlation coefficients of Rcal= 0.968 and Rval= 0.936 allowing the quantification of fat with a medium prevision error (Er) of 6.37%. For the protein level, the best result was obtained using MSC and data centered on media (DCM). The model of regression, with 6 VLs, presented correlation coefficients of Rcal= 0.968 and Rval= 0.885, and determination of protein with Er of 5.95%. The best model for determination of moisture used normalization, with 4 VLs correlation coefficients of Rcal= 0.851 and Rval= 0.757 and allowing the quantification of moisture with and Er of 1.91%. It was not possible to build models for acidity, carbohydrates, ashes, chloride and pH parameters, presenting low values of Rcal and Rval, demonstrating the low capacity of forecasting even for samples that compose the calibration set through the proposed methodology. These results demonstrate the potential of multivariate models on determination of fat, protein and moisture levels on samples with complex matrices (ricotta) and also show the advantages of the association NIRRS-PLSR which allows a fast quality control with minimum manipulation of the sample. / A ricota é um tipo de queijo fresco, obtido pela precipitação das proteínas do soro do queijo. Segundo a legislação vigente, a ricota é enquadrada nos padrões de identidade e qualidade de queijos magros, no entanto, estudos demonstram a grande variabilidade na sua composição centesimal. Isto justifica a necessidade de estabelecimento de padrões de qualidade, e o desenvolvimento de metodologias que possibilitem um controle rápido e eficiente do produto. Além disso, as metodologias convencionais empregadas para a determinação da composição centesimal da ricota, embora façam parte das análises de rotina em laboratórios de controle de qualidade, são onerosas, demoradas e geram resíduos. Neste sentido, o objetivo deste estudo foi desenvolver um método para a quantificação dos parâmetros físico-químicos, utilizando-se espectroscopia no infravermelho próximo por reflectância difusa (NIRRS) associado a métodos de calibração multivariada. Para a construção dos modelos multivariados (principalmente PLSR) foram utilizadas as médias das concentrações de acidez, carboidratos, cinzas, cloretos, gordura, pH, proteína e umidade, obtidas pelas metodologias convencionais (método titulométrico, espectroscópico, carbonização em mufla, titulométrico, Gerber, potenciométrico, Kjeldahl e método gravimétrico, respectivamente), bem como, os dados de espectroscopia no infravermelho próximo. Foram coletados espectros em duplicata, sendo que 33 desses espectros foram utilizados para a fase de calibração e os 5 restantes utilizados para a fase de validação externa. O melhores resultados para os teores de gordura, proteína e umidade foram obtidos na região espectral entre 1100 a 2500 nm. O modelo otimizado para a determinação de gordura empregou a correção do espalhamento multiplicativo (MSC), com 6 variáveis latentes (VLs), obtendo-se coeficientes de correlação de Rcal= 0,968 e Rval= 0,936 possibilitando a quantificação de gordura com um erro médio de previsão (Er) de 6,37%. Para o teor de proteína, o melhor resultado foi obtido utilizando-se a MSC e dados centrados na média (DCM). O modelo de regressão, com 6 VLs, apresentou coeficientes de correlação de Rcal= 0,968 e Rval= 0,885, e determinação de proteína com Er de 5,95%. O melhor modelo para a determinação de umidade empregou a normalização, com 4 VLs, obtendo-se coeficientes de correlação de Rcal= 0,851 e Rval= 0,757 e possibilitando a quantificação de umidade com um Er de 1,91%. Não foi possível a construção de modelos para os parâmetros acidez, carboidratos, cinzas, cloretos e pH, apresentando baixos valores de Rcal e Rval, demonstrando a baixa capacidade de previsão mesmo para as amostras que compõem o conjunto de calibração através da metodologia proposta. Estes resultados além de demonstrarem o potencial dos modelos multivariados na determinação dos teores de gordura, proteína e umidade em amostras com matrizes complexas (ricota) evidenciam as vantagens da associação NIRRS-PLSR que permite um controle de qualidade rápido com uma manipulação mínima da amostra.
Identifer | oai:union.ndltd.org:IBICT/oai:tede2.uepg.br:prefix/685 |
Date | 25 February 2010 |
Creators | Madalozzo, Elisângela Serenato |
Contributors | Nagata, Noemi, Sauer, Elenise, Peralta-zamora, Patricio Guillermo, Demiate, Ivo Mottin |
Publisher | UNIVERSIDADE ESTADUAL DE PONTA GROSSA, Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos, UEPG, BR, Ciências e Tecnologia de Alimentos |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UEPG, instname:Universidade Estadual de Ponta Grossa, instacron:UEPG |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0032 seconds