Return to search

Vegetation and climate history of the Fraser Glaciation on southeastern Vancouver Island, British Columbia, Canada

Pollen records from southeastern Vancouver Island, British Columbia, show changes in vegetation and climate from the late Olympia Interstade through the Fraser Glaciation. This study provides important insights into phytogeographic patterns of Pacific Northwest flora, leads to an enhanced understanding of processes affecting present-day ranges of several plant taxa, and provides a historical perspective on the origin of coastal alpine ecosystems. Evidence for a previously unrecognized glacial advance in the region at ~21,000 14C yr BP, herein called the Saanich glacier, is provided. The results reveal widespread habitat and food sources suitable for the mega fauna that lived on southern Vancouver Island during the last glaciation.
Vegetation during the Fraser Glaciation represented a mosaic of plant communities across a heterogeneous and productive landscape. Pollen spectra indicate that plant assemblages, dominated by Poaceae and Cyperaceae, were widespread. Similarities to tundra in northern Alaska and high elevation sites in British Columbia were detected. Vegetation varied geographically in the late Olympia (ca. 33,500-29,000 14C yr BP). Grassy uplands with scattered trees and local moist meadows occurred at Qualicum Beach under mesic and cool conditions, while cold and dry grass tundra prevailed at Skutz Falls. Increased non-arboreal pollen percentages at Qualicum Beach, 29,000 14C yr BP, reflect expansion of grassy meadows with diverse herbs under a cool and dry climate at the onset of the Fraser Glaciation. At Qualicum Beach between 25,160-24,190 14C yr BP, sedge wetlands were surrounded by open, dry uplands. Concurrently at Osborne Bay, Pinus-Picea-Abies-Poaceae parkland occurred. Dry and cold climate intensified as the Fraser Glaciation progressed after 24,000 14C yr BP and non-arboreal communities expanded. At Cordova Bay, cold and dry tundra or parkland in upland sites, and sedge wetlands on an aggrading floodplain are recorded. Sparse tree cover and grass-tundra surrounded a floodplain at Skutz Falls around 21,000 14C yr BP under cool and dry climate. Subalpine-like Picea-Abies-Pinus parkland and moist, species-rich grassland meadows occurred at McKenzie Bight at the same time. A sedge wetland occupied the site of deposition, and was periodically inundated as lake levels fluctuated. Upland grasslands at Cordova Bay are recorded between 21,600–19,400 14C yr BP, while local ponded areas developed on an aggrading floodplain at sea level. From 19,400-19,300 14C yr BP, parkland at Cordova Bay developed as climate moistened and warmed at the time of the Port Moody Interstade known from the Fraser Lowland. Abundant marine dinoflagellate cysts between 21,600–19,400 14C yr BP, reveal a high sea level stand and strong marine influence at Cordova Bay. Glacioisostatic depression of the crust on the east side of Vancouver Island is the most probable explanation. The presence of pollen-bearing glacio-lacustrine sediments at McKenzie Bight around 21,000 14C yr BP at ~93 m and contemporaneous isostatic crustal depression at Cordova Bay strongly suggest a major glacial body in the region at the same time as the Coquitlam advance in the Lower Mainland. Ice-free landscapes may have occurred on southern Vancouver Island through the Fraser glaciation beyond the Saanich glacier ice limits. / Graduate

Identiferoai:union.ndltd.org:uvic.ca/oai:dspace.library.uvic.ca:1828/4343
Date12 December 2012
CreatorsMiskelly, Kristen Rhea
ContributorsHebda, Richard Joseph, Allen, Geraldine A.
Source SetsUniversity of Victoria
LanguageEnglish
Detected LanguageEnglish
TypeThesis
RightsAvailable to the World Wide Web

Page generated in 0.0233 seconds