Return to search

Structural Analysis and a Kink Band Model for the Formation of the Gemini Fault Zone, an Exhumed Left-Lateral Strike Slip Fault Zone in the Central Sierra Nevada, California

The structure and regional tectonic setting of an exhumed, 9.3-km long, left-lateral strike-slip fault zone eludicates processes of growth, linkage, and termination for strike-slip fault zones in granitic rocks. The Gemini fault zone is composed of three steeply dipping, southwest-striking, noncoplanar segments that nucleated and grew along preexisting joints. The fault zone has a maximum slip of 131 m and is an example of a segmented, hard-linked fault zone in which geometrical complexities of the faults and compositional variations of protolith and host rock resulted in nonuniform slip orientations, complex interactions at fault segments, and an asymmetric slip-distance profile. Regional structural analysis shows that joints and left-lateral fault zones have accommodated slip within a 4.8-km wide, right-lateral monoclinical kink band with vertical fold axes and northwest-striking axial surfaces. Geometric modeling of the kink band indicates that as little as 1.1 km of right-lateral displacement across the kink band may have produced the observed slip on kilometer-scale faults within the kink band.

Identiferoai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-6296
Date01 May 2001
CreatorsPachell, Matthew A.
PublisherDigitalCommons@USU
Source SetsUtah State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceAll Graduate Theses and Dissertations
RightsCopyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact digitalcommons@usu.edu.

Page generated in 0.0018 seconds