Return to search

Capacidade preditiva de Modelos Credit Scoring em inferência dos rejeitados

Made available in DSpace on 2016-06-02T20:06:10Z (GMT). No. of bitstreams: 1
6034.pdf: 941825 bytes, checksum: 6d06b85571d5cab86cee2ed1c1d699da (MD5)
Previous issue date: 2014-03-28 / Universidade Federal de Sao Carlos / Granting credit to an applicant is a decision made in a context of uncertainty. At the moment the lender decides to grant a loan or credit sale there is always the possibility of loss, and, if it is associated with a probability, the decision to grant or not credit will be more reliable. In order to aid the decision to accept or not the request for applicants are used the credit scoring models, which estimate the probability of loss associated with granting credit. But one of the problems involving these models is that only information about the applicants accepted are used, which causes a sampling bias, because the rejected applicants are discarded. With the aim to solve this problem it can use rejected inference, which are considered individuals who have had credit application rejected. However, only considering rejected inference and one method of modeling data, usually, is not sufficient to get satisfactory predictive measures, and thus, were used combined results of three methods, logistic regression, analysis probit and decision tree. The purpose of this combination were to increase the predictive perfomance and the metrics used were sensitivity, specificity , positive predictive value, negative predictive value and accuracy. Through the application in data sets we concluded that the use of the combined results increased the predictive performance, specially regarding to sensitivity. / A concessão de crédito e uma decisão a ser tomada num contexto de incertezas. No momento em que o credor decide conceder um empréstimo, realizar um financiamento ou venda a prazo sempre existe a possibilidade de perda, e, se for atribuída uma probabilidade a esta perda, a decisão de conceder ou não credito será mais confiável. Com o objetivo de auxiliar a tomada de decisão em relação ao pedido de credito dos solicitantes são utilizados os modelos credit scoring, os quais estimam a probabilidade de perda associada a concessão de credito. Um dos problemas envolvendo estes modelos e que somente informações a respeito dos proponentes aceitos são utilizadas, o que causa um viés amostral, pois, os solicitantes recusados são descartados no processo de modelagem. Com intuito de solucionar este problema tem-se a inferência dos rejeitados, em que são considerados os indívíduos que tiveram pedido de credito rejeitado. No entanto, considerar a inferência dos rejeitados e o uso de somente um método de modelagem de dados, muitas vezes, não e suficiente para que se tenha medidas preditivas satisfatórias. Desta forma, foram utilizados resultados combinados de três metodologias, regressão logística, probit e árvore de decisão/classificação concomitantemente a utilização dos métodos de inferência dos rejeitados que incluem o uso de variável latente, reclassificação, parcelamento e ponderação. O objetivo dessa combinação foi aumentar a capacidade preditiva e as métricas utilizadas foram a sensibilidade, especificidade, valor preditivo positivo, valor preditivo negativo e acurácia. Através da aplicação em conjuntos de dados concluiu-se que a utilização dos resultados combinados aumentou a capacidade preditiva, principalmente, em relação a sensibilidade.

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.ufscar.br:ufscar/4583
Date28 March 2014
CreatorsPrazeres Filho, Jurandir
ContributorsLouzada Neto, Francisco
PublisherUniversidade Federal de São Carlos, Programa de Pós-graduação em Estatística, UFSCar, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Repositório Institucional da UFSCAR, instname:Universidade Federal de São Carlos, instacron:UFSCAR
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0025 seconds