Um problema importante na área de Biologia Sistêmica é o de inferência de redes de regulação gênica. Os avanços científicos e tecnológicos nos permitem analisar a expressão gênica de milhares de genes simultaneamente. Por \"expressão gênica\'\', estamos nos referindo ao nível de mRNA dentro de uma célula. Devido a esta grande quantidade de dados, métodos matemáticos, estatísticos e computacionais têm sido desenvolvidos com o objetivo de elucidar os mecanismos de regulação gênica presentes nos organismos vivos. Para isso, modelos matemáticos de redes de regulação gênica têm sido propostos, assim como algoritmos para inferir estas redes. Neste trabalho, focamos nestes dois aspectos: modelagem e inferência. Com relação à modelagem, estudamos modelos existentes para o ciclo celular da levedura (Saccharomyces cerevisiae). Após este estudo, propomos um modelo baseado em redes Booleanas probabilísticas sensíveis ao contexto, e em seguida, um aprimoramento deste modelo, utilizando cadeias de Markov não homogêneas. Mostramos os resultados, comparando os nossos modelos com os modelos estudados. Com relação à inferência, propomos um novo algoritmo utilizando o paradigma de crescimento de semente de genes. Neste contexto, uma semente é um pequeno subconjunto de genes de interesse. Nosso algoritmo é baseado em dois passos: passo de crescimento de semente e passo de amostragem. No primeiro passo, o algoritmo adiciona outros genes à esta semente, seguindo algum critério. No segundo, o algoritmo realiza uma amostragem de redes, definindo como saída um conjunto de redes potencialmente interessantes. Aplicamos o algoritmo em dados artificiais e dados biológicos de células HeLa, mostrando resultados satisfatórios. / A key problem in Systems Biology is the inference of gene regulatory networks. The scientific and technological advancement allow us to analyze the gene expression of thousands of genes, simultaneously. By \"gene expression\'\' we refer to the mRNA concentration level inside a cell. Due to this large amount of data, mathematical, statistical and computational methods have been developed in order to elucidate the gene regulatory mechanisms that take part of every living organism. To this end, mathematical models of gene regulatory networks have been proposed, along with algorithms to infer these networks. In this work, we focus in two aspects: modeling and inference. Regarding the modeling, we studied existing models for the yeast (Saccharomyces cerevisiae) cell cycle. After that, we proposed a model based on context sensitive probabilistic Boolean networks, and then, an improvement of this model, using nonhomogeneous Markov chain. We show the results, comparing our models against the studied models. Regarding the inference, we proposed a new algorithm using the seed growing paradigm. In this context, a seed is a small subset of genes. Our algorithm is based in two main steps: seed growing step and sampling step. In the first step, the algorithm adds genes into the seed, according to some criterion. In the second step, the algorithm performs a sampling process on the space of networks, defining as its output a set of potentially interesting networks. We applied the algorithm on artificial and biological HeLa cells data, showing satisfactory results.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-06092012-144108 |
Date | 17 February 2012 |
Creators | Carlos Henrique Aguena Higa |
Contributors | Ronaldo Fumio Hashimoto, André Fujita, Fabricio Martins Lopes, David Corrêa Martins Junior, Júlio Cesar Martins Monte |
Publisher | Universidade de São Paulo, Ciência da Computação, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0029 seconds