Return to search

Asymptotics of Gaussian Regularized Least-Squares

We consider regularized least-squares (RLS) with a Gaussian kernel. Weprove that if we let the Gaussian bandwidth $\sigma \rightarrow\infty$ while letting the regularization parameter $\lambda\rightarrow 0$, the RLS solution tends to a polynomial whose order iscontrolled by the relative rates of decay of $\frac{1}{\sigma^2}$ and$\lambda$: if $\lambda = \sigma^{-(2k+1)}$, then, as $\sigma \rightarrow\infty$, the RLS solution tends to the $k$th order polynomial withminimal empirical error. We illustrate the result with an example.

Identiferoai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/30577
Date20 October 2005
CreatorsLippert, Ross, Rifkin, Ryan
Source SetsM.I.T. Theses and Dissertation
Languageen_US
Detected LanguageEnglish
Format1 p., 7286963 bytes, 527607 bytes, application/postscript, application/pdf
RelationMassachusetts Institute of Technology Computer Science and Artificial Intelligence Laboratory

Page generated in 0.0018 seconds