Implementation of C++ and Matlab based control of University of South Florida's latest wheelchair-mounted robotic arm (USF WMRA-II), which has 9 degrees-of-freedom, was carried out under this Master's thesis research. First, the rotational displacements about the 7 joints of the robotic arm were calibrated. It was followed by setting the control gains of the motors. Then existing high-level programs developed using C++ and Matlab for USF WMRA-I were modified for WMRA-II. The required low-level programs to provide complete kinematics of the joint movements to the controller board of WMRA-II (Galil DMC-2183) were developed using C++. A test GUI was developed using C++ to troubleshoot the control program and to evaluate the operation of the robotic arm. It was found that WMRA-II has higher repeatability, accuracy and manipulability as well as lower power consumption than WMRA-I. Touch-Screen and Spaceball user interfaces were successfully implemented to facilitate people with different disabilities.
Identifer | oai:union.ndltd.org:USF/oai:scholarcommons.usf.edu:etd-2569 |
Date | 06 July 2010 |
Creators | Basnayaka, Punya A |
Publisher | Scholar Commons |
Source Sets | University of South Flordia |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Graduate Theses and Dissertations |
Rights | default |
Page generated in 0.0016 seconds