Neste trabalho, estudamos a ação dos grupos dos quatérnios generalizados \'Q IND.4t\', nas esferas, com o objetivo de calcularmos a torção de Reidemeister dos espaços quocientes, chamados de Formas Espaciais Esféricas Quaterniônicas. Calculamos a torção de Ray-Singer das esferas, dos espaços lenticulares e do cone sobre as esferas, este último fornecendo o caso particular do disco, usando a base para a homologia definida em [27]. Para as variedades fechadas, obtivemos a torção analítica por meio do Teorema de Cheeger-Müller [7, 22], e para o disco, por meio de uma fórmula provada por Brüning e Ma em [5] / In this work, we study the action of the generalized quaternionic groups \'Q IND.4t\' on the spheres to compute the Reidemeister torsion of the quotient spaces, which are called Quaternionic Spherical Space Forms. Using the base of the homology defined by Ray and Singer in [27] we compute also the Ray-Singer torsion of the spheres, lens spaces and the cone over the spheres. This last one provides the disc as a particular case. For the closed manifolds we obtain the analytic torsion using the Cheeger-Müller Theorem [7, 22] and for the disc using a formula proved by Brüning and Ma in [5]
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-26052009-135508 |
Date | 17 March 2009 |
Creators | Thiago de Melo |
Contributors | Mauro Flávio Spreafico, Carlos Biasi, Alice Kimie Miwa Libardi, Caio Jose Colletti Negreiros, Pedro Luiz Queiroz Pergher |
Publisher | Universidade de São Paulo, Matemática, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0021 seconds