Made available in DSpace on 2015-03-03T15:15:23Z (GMT). No. of bitstreams: 1
AntonioMF.pdf: 5580410 bytes, checksum: cf8e01854d7d827d05dd7a75902c3375 (MD5)
Previous issue date: 2008-07-11 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / Difusive processes are extremely common in Nature. Many complex systems, such as microbial colonies, colloidal aggregates, difusion of fluids, and migration of populations, involve a large number of similar units that form fractal structures. A new model of difusive agregation was proposed recently by Filoche and Sapoval [68]. Based on their work, we develop a model called Difusion with Aggregation and Spontaneous Reorganization . This model consists of a set of particles with excluded volume interactions, which perform random walks on a square lattice. Initially, the lattice is occupied with a density p = N/L2 of particles occupying distinct, randomly chosen positions. One of the particles is selected at random as the active particle. This particle executes a random walk until it visits a site occupied by another particle, j. When this happens, the active particle is rejected back to its previous position (neighboring particle j), and a new active particle is selected at random from the set of N particles. Following an initial transient, the system attains a stationary regime. In this work we study the stationary regime, focusing on scaling properties of the particle distribution, as characterized by the pair correlation function ?(r). The latter is calculated by averaging over a long sequence of configurations generated in the stationary regime, using systems of size 50, 75, 100, 150, . . . , 700. The pair correlation function exhibits distinct behaviors in three diferent density ranges, which we term subcritical, critical, and supercritical. We show that in the subcritical regime, the particle distribution is characterized by a fractal dimension. We also analyze the decay of temporal correlations / Na Natureza ? muito comum ocorrerem processos de difus?o. Muitos sistemas complexos, tais como: col?nias microbianas, agregados coloidais, difus?o de fluidos e migra??es populacionais, s?o compostos de um n?mero muito grande de unidades similares que formam estruturas fractais. Recentemente, um novo estudo destes sistemas foi introduzido por Filoche e Sapoval [68]. Baseado neste trabalho, n?s desenvolvemos um modelo chamado "Difus?o com Agrega??o e Reorganiza??o Espont?nea". Este modelo consiste em um conjunto de part?culas que interagem por meio da exclus?o de volume quando realizam caminhadas aleat?rias em uma rede quadrada. Inicialmente, a rede ? preenchida com uma densidade p = N/L2 de part?culas distribu?das em posi??es distintas escolhidas aleatoriamente. Uma das part?culas ? escolhida ao acaso para se tornar uma part?cula ativa. Esta part?cula executa caminhadas aleat?rias at? visitar um s?tio ocupado por uma part?cula j. Quando a part?cula ativa salta sobre o s?tio ocupado pela part?cula j ? re etida e retorna para a posi??o anterior, e uma nova part?cula ativa ? escolhida aleatoriamente no conjunto de N part?culas contidas na rede. Ap?s um transiente, o sistema alcan?a um regime estacion?rio. Neste trabalho, n?s estudamos este regime estacion?rio, atentando para as propriedades de escala da distribui??o de part?culas que ? caracterizada por uma fun??o de correla??o de pares ?(r). Em seguida, calculamos a m?dia sobre uma sequ?ncia de configura??es geradas nesse regime, usando sistemas de tamanhos L igual a 50, 75, 100, 150, . . . , 700. A fun??o de correla??o de pares exibe comportamentos distintos em tr?s regimes diferentes de densidades, que n?s definimos como regime subcr?tico, cr?tico e supercr?tico. N?s mostramos que no regime subcr?tico, a distribui??o de part?culas ? caracterizada por uma dimens?o fractal. N?s tamb?m analisamos o decaimento das correla??es temporais
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.ufrn.br:123456789/18581 |
Date | 11 July 2008 |
Creators | Macedo Filho, Antonio de |
Contributors | CPF:07416407400, http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4783310Y1, Dickman, Ronald, CPF:00572679955, http://lattes.cnpq.br/0484982277336205, Silva Filho, Paulo Cavalcante da, Silva, Luciano Rodrigues da |
Publisher | Universidade Federal do Rio Grande do Norte, Programa de P?s-Gradua??o em F?sica, UFRN, BR, F?sica da Mat?ria Condensada; Astrof?sica e Cosmologia; F?sica da Ionosfera |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Repositório Institucional da UFRN, instname:Universidade Federal do Rio Grande do Norte, instacron:UFRN |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0105 seconds