Cette thèse s'inscrit dans le cadre du programme de Langlands local p-adique. Soient L une extension finie de Q_p, \rho_L une représentation p-adique de dimension 2 du groupe de Galois Gal(\overline{Q_p}/L) de L, lorsque \rho_L provient d'une représentation \rho globale et modulaire (i.e. \rho apparaît dans la cohomologie étale des courbes de Shimura), on sait associer à \rho une représentation de Banach admissible de \GL_2(L), notée \widehat{\Pi}(\rho), en utilisant la théorie de la cohomologie étale complétée d'Emerton. Localement, lorsque \rho_L est cristalline (et assez générique), d'après Breuil, on sait associer à \rho_L une représentation localement analytique de \GL_2(L), notée \Pi(\rho_L). Dans cette thèse, on montre divers résultats sur la compatibilité entre les représentations \widehat{\Pi}(\rho) et \Pi(\rho_L), qui s'appelle la compatibilité local-global, dans la cas des courbes de Shimura unitaires. Par la théorie des représentations localement analytiques de \GL_2(L), le problème de compatibilité local-global se ramène à l'étude des variétés de Hecke X construites à partir du H^1-complété des courbes de Shimura unitaires. On montre des résultats sur la compatibilité local-global dans le cas non-critique en utilisant la théorie de la triangulation globale. On étudie ainsi les formes modulaires p-adiques sur les courbes de Shimura unitaires, à partir desquelles on peut construire des sous-espaces rigides de X à la manière de Coleman-Mazur. On montre l'existence des formes compagnons surconvergentes sur les courbes de Shimura unitaires en utilisant les théorèmes de comparaison p-adique, d'où on déduit des résultats sur la compatibilité local-global dans le cas critique. / The subject of this thesis is in the p-adic Langlands programme. Let L be a finite extension of \Q_p, \rho_L a 2-dimensional p-adic representation of the Galois group \Gal(\overline{\Q_p}/L) of L, if \rho_L is the restriction of a global modular Galois representation \rho (i.e. \rho appears in the étale cohomology of Shimura curves), one can associate to \rho an admissible Banach representation \widehat{\Pi}(\rho) of \GL_2(L) by using Emerton's completed cohomology theory. Locally, if \rho_L is crystalline (and sufficiently generic), following Breuil, one can associate to \rho_L a locally analytic representation \Pi(\rho_L) of \GL_2(L). In this thesis, we prove results on the compatibility of \widehat{\Pi}(\rho) and \Pi(\rho_L), called local-global compatibility, in the unitary Shimura curves case. By locally analytic representations theory (for \GL_2(L)), the problem of local-global compatibility can be reduced to the study of eigenvarieties X constructed from the completed H^1 of unitary Shimura curves. We prove results on local-global compatibility in non-critical case by using global triangulation theory. We also study the p-adic modular forms over unitary Shimura curves, from which we construct some closed rigid subspaces of X by Coleman-Mazur's method. We prove the existence of overconvergent companion forms (over unitary Shimura curves) by using p-adic comparison theorems, from which we deduce some results on local-global compatibility in critical case.
Identifer | oai:union.ndltd.org:theses.fr/2015PA112035 |
Date | 19 March 2015 |
Creators | Ding, Yiwen |
Contributors | Paris 11, Breuil, Christophe |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0021 seconds