One of the most important boron minerals, colemanite is reacted with sulfuric acid to produce boric acid. During this reaction, gypsum (calcium sulfate dihydrate) is formed as a byproduct. In this study, the boric acid production was handled both in a batch and four continuously stirred slurry reactors (4-CFSSR&rsquo / s) in series system.
In this reaction system there are at least three phases, one liquid and two solid phases (colemanite and gypsum). In a batch reactor all the phases have the same operating time (residence time), whereas in a continuous reactor all the phases may have different residence time distributions. The residence time of both the reactant and the product solids are very important because they affect the dissolution conversion of colemanite and the growth of gypsum crystals.
The main aim of this study was to investigate the dynamic behavior of continuous flow stirred slurry reactors. By obtaining the residence time distribution of the solid and liquid components, the non-idealities in the reactors can be found. The experiments performed in the continuous flow stirred slurry reactors showed that the reactors to be used during the boric acid production experiments approached an ideal CSTR in the range of the stirring rate (500-750 rpm) studied.
The steady state performance of the continuous flow stirred slurry reactors (CFSSR&rsquo / s) in series was also studied. During the studies, two colemanites having the same origin but different compositions and particle sizes were used.
The boric acid production reaction consists of two simultaneous reactions, dissolution of colemanite and crystallization of gypsum. The dissolution of colemanite and the gypsum formation was followed from the boric acid and calcium ion concentrations, respectively. The effect of initial CaO/ SO42- molar ratio (1.00, 1.37 and 2.17) on the boric acid and calcium ion concentrations were searched. Also, at these initial molar ratios the colemanite feed rate was varied (5, 7.5, 10 and 15 g/min) to change the residence time of the slurry.
Purity of the boric acid solution was examined in terms of the selected impurities, which were the magnesium and sulfate ion concentrations. The concentrations of them were compared at the initial molar ratios of 1.00 and 1.37 with varying colemanite feed rates. It was seen that at high initial CaO/ SO42- molar ratios the sulfate and magnesium ion concentrations decreased but the calcium ion concentration increased.
The gypsum crystals formed in the reaction are in the shape of thin needles. These crystals, mixed with the insolubles coming from the mineral, are removed from the boric acid slurry by filtration. Filtration of gypsum crystals has an important role in boric acid production reaction because it affects the efficiency, purity and crystallization of boric acid. These crystals must grow to an appropriate size in the reactor. The growth process of gypsum crystals should be synchronized with the dissolution reaction.
The effect of solid hold-up (0.04&ndash / 0.09), defined as the volume of solid to the total volume, on the residence time of gypsum crystals was investigated and the change of the residence time (17-60 min) on the growth of the gypsum was searched. The residence time at each reactor was kept constant in each experiment as the volumes of the reactors were equal. The growth of gypsum was examined by a laser diffraction particle size analyzer and the volume weighted mean diameters of the gypsum crystals were obtained. The views of the crystals were taken under a light microscope. It was observed that the high residence time had a positive effect on the growth of gypsum crystals. The crystals had volume weighted mean diameters of even 240 µ / m.
The gypsum crystal growth model was obtained by using the second order crystallization reaction rate equation. The residence time of the continuous reactors are used together with the gypsum growth model to simulate the continuous boric acid reactors with macrofluid and microfluid models. The selected residence times (20-240 min) were modeled for different number of CSTR&rsquo / s (1-8) and the PFR.
The simulated models were, then verified with the experimental data. The experimentally found calcium ion concentrations checked with the concentrations found from the microfluid model. It was also calculated that the experimental data fitted the microfluid model with a deviation of 4-7%.
Identifer | oai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12605047/index.pdf |
Date | 01 June 2005 |
Creators | Yucel Cakal, Gaye O. |
Contributors | Eroglu, Inci |
Publisher | METU |
Source Sets | Middle East Technical Univ. |
Language | English |
Detected Language | English |
Type | Ph.D. Thesis |
Format | text/pdf |
Rights | To liberate the content for public access |
Page generated in 0.0018 seconds