Return to search

Resolubilidade global para campos vetoriais no toro n-dimensional / Global solvability for vector fields on the n-torus

Abordaremos o estudo de condições para que certas equações diferenciais parciais tenham solução. Consideraremos equações do tipo Lu = f; onde tomamos L em algumas classes de campos vetoriais em toros de dimensão maior que dois. Tais campos vetoriais são operadores que agem no espaço das funções definidas no toro e que são infinitamente diferenciáveis. A principal questão é determinar quando tais operadores têm imagem fechada. Temos também interesse em saber quando que a imagem de tais operadores e um subespaço de codimensão finita, bem como estudar a regularidade de tais operadores. As respostas de tais questões envolvem certas propriedades dos coeficientes desses operadores, onde citamos: a conexidade de sub-níveis de primitivas da parte imaginária dos coeficientes; condições Diofantinas; a ordem de anulamento dos coeficientes e relações entre as ordens de anulamento das partes real e imaginária dos coeficientes; além disso, o número de vezes que a parte imaginária de um coeficiente c muda de sinal entre dois zeros consecutivos de c também desempenha um papel. Conseguimos caracterizar a resolubilidade e a hipoelíticidade global de campos vetoriais do tipo tubo em toros de dimensão maior do que dois, estendendo os resultados em dimensão dois. Depois, em dimensões, fornecemos condições que respondem sobre a imagem ser ou não fechada, para uma outra classe de campos vetoriais que não são do tipo tubo. Uma de tais condições esta relacionada com a famosa condição (P) de Nirenberg-Treves. Em particular, obtemos o mesmo para uma classe de campos vetoriais em dimensão são dois, para os quais a codimensão da imagem foi exaustivamente estudada. / We are concerned with the study of properties so that we can solve certain partial differential equations. We will consider equations of the form Lu = f; where we take L in some classes of vector fields on tori of dimension greater than two. This vector fields are viewed as operators acting on the space of smooth functions deffned on the torus. The main questions to study the closedness of the range of L. It is also of interest to know whe ther the range has finite codimension, as well as to study the regularity of L. The answers of these questions are connected with certain properties of the coeffcients of L; such as: Diophantine conditions; the connectedness of some sublevel sets involving primitive so fthe imaginary part of the coeffcients; the order of vanishing of each coeffcient and relations between the order of vanishing of the real and imaginary parts of each coeffcient; in addition, the number of times that the imaginary part of a coeffcient c changes sign between two consecutive zeros of c also plays a role. We characterize both global solvability and hypoellipticity for vector fields of tube type on tori of dimension greater than two, extending the results in dimension two. More over, in dimension three, we find conditions for the closedness of the range for a class of vector fields which are not of tube type. One of theese conditions is related to the well known Nirenberg-Treves condition (P). In particular,we obtain the same for a class of vector fields on the two- torus,for which the codimension of the range was largely studied.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-29092016-163857
Date02 March 2015
CreatorsRafael Borro Gonzalez
ContributorsAdalberto Panobianco Bergamasco, Paulo Leandro Dattori da Silva, Tiago Henrique Picon, José Ruidival Soares dos Santos Filho, Sergio Luis Zani
PublisherUniversidade de São Paulo, Matemática, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0022 seconds