Neste trabalho estudamos a resolubilidade suave de campos vetoriais complexos suaves da forma L = L1 + iL2, em uma variedade M, com as seguintes propriedades: em cada ponto de M, os campos L1 e L2 são linearmente independentes , e seu colchete [L1, L2](x) é uma combinação linear de L1(x) e L2(x). Para tratar da resolubilidade local, nos utilizamos da teoria dos espaços Bp,k e operadores de força constante. Seguindo para a resolubilidade semiglobal, estudamos a folheação gerada por L1 e L2: mostramos que neste caso as folhas possuem estrutura de variedade complexa, o que nos permite obter um panorama bastante completo sobre o problema. Para encerrar, provamos que L é globalmente resolúvel se e somente se for semiglobalmente resolúvel e M for L-convexa; exibimos condições suficientes para que isto ocorra. / In this work we shall study the smooth solvability of smooth complex vector fields L = L1 + iL2 on a smooth manifold M, assuming the following properties: for any point of M, L1 and L2 are linearly independent and [L1,L2] is a linear combination of L1 and L2. Discussing local solvability, we shall employ the theory of Bp,k Spaces and Operators of Constant Strength. Moving on to Semi-Global Solvability, we shall study the foliation that is generated by L1 and L2: we prove that in this case the leaves are actually complex manifolds, which allow us to obtain an wide comprehension of the problem. Finally, we show that L is globally solvable if and only if it is semi-globally solvable and M is L-convex; we then exhibit sufficient conditions in order to it occur.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-17082017-225043 |
Date | 03 March 2017 |
Creators | Victor, Bruno de Lessa |
Contributors | Cordaro, Paulo Domingos |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | English |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.002 seconds