Return to search

Non-Cartesian Parallel Magnetic Resonance Imaging / Nicht kartesische parallele Magnetresonanz-Bildgebung

Besides image contrast, imaging speed is probably the most important consideration in clinical magnetic resonance imaging (MRI). MR scanners currently operate at the limits of potential imaging speed, due to technical and physiological problems associated with rapidly switched gradient systems. Parallel imaging (parallel MRI or pMRI) is a method which allows one to significantly shorten the acquisition time of MR images without changing the contrast behavior of the underlying MR sequence. The accelerated image acquisition in pMRI is accomplished without relying on more powerful technical equipment or exceeding physiological boundaries. Because of these properties, pMRI is currently employed in many clinical routines, and the number of applications where pMRI can be used to accelerate imaging is increasing. However, there is also growing criticism of parallel imaging in certain applications. The primary reason for this is the intrinsic loss in the SNR due to the accelerated acquisition. In addition, other effects can also lead to a reduced image quality. Due to unavoidable inaccuracies in the pMRI reconstruction process, local and global errors may appear in the final reconstructed image. The local errors are visible as noise enhancement, while the global errors result in the so-called fold-over artifacts. The appearance and strength of these negative effects, and thus the image quality, depend upon different factors, such as the parallel imaging method chosen, specific parameters in the method, the sequence chosen, as well as specific sequence parameters. In general, it is not possible to optimize all of these parameters simultaneously for all applications. The application of parallel imaging in can lead to very pronounced image artifacts, i.e. parallel imaging can amplify errors. On the other hand, there are applications such as abdominal MR or MR angiography, in which parallel imaging does not reconstruct images robustly. Thus, the application of parallel imaging leads to errors. In general, the original euphoria surrounding parallel imaging in the clinic has been dampened by these problems. The reliability of the pMRI methods currently implemented is the main criticism. Furthermore, it has not been possible to significantly increase the maximum achievable acceleration with parallel imaging despite major technical advances. An acceleration factor of two is still standard in clinical routine, although the number of independent receiver channels available on most MR systems (which are a basic requirement for the application of pMRI) has increased by a factor of 3-6 in recent years. In this work, a novel and elegant method to address this problem has been demonstrated. The idea behind the work is to combine two methods in a synergistic way, namely non-Cartesian acquisition schemes and parallel imaging. The so-called non-Cartesian acquisition schemes have several advantages over standard Cartesian acquisitions, in that they are often faster and less sensitive to physiological noise. In addition, such acquisition schemes are very robust against fold-over artifacts even in the case of vast undersampling of k-space. Despite the advantages described above, non-Cartesian acquisition schemes are not commonly employed in clinical routines. A reason for that is the complicated reconstruction techniques which are required to convert the non-Cartesian data to a Cartesian grid before the fast Fourier transformation can be employed to arrive at the final MR image. Another reason is that Cartesian acquisitions are routinely accelerated with parallel imaging, which is not applicable for non-Cartesian MR acquisitions due to the long reconstruction times. This negates the speed advantage of non-Cartesian acquisition methods. Through the development of the methods presented in this thesis, reconstruction times for accelerated non-Cartesian acquisitions using parallel imaging now approach those of Cartesian images. In this work, the reliability of such methods has been demonstrated. In addition, it has been shown that higher acceleration factors can be achieved with such techniques than possible with Cartesian imaging. These properties of the techniques presented here lead the way for an implementation of such methods on MR scanners, and thus also offer the possibility for their use in clinical routine. This will lead to shorter examination times for patients as well as more reliable diagnoses. / Neben dem Bildkontrast ist die Aufnahmegeschwindigkeit die entscheidende Größe für die klinische Anwendung der Magnetresonanz-Tomographie (MRT). Heutzutage arbeiten MR-Tomographen bereits häufig am Limit dessen, was technisch möglich und physiologisch noch vertretbar ist. Die parallele Bildgebung (parallele MRT, pMRT) ist ein Verfahren, welches es ermöglicht, die Aufnahmezeiten von MRT-Bildern signifikant zu verkürzen, ohne dabei das Kontrastverhalten der zu Grunde liegenden MR Sequenz zu verändern. Die beschleunigte Bildakquisition in der pMRT wird erzielt, ohne auf eine leistungsfähigere technische Ausstattung der MR-Tomographen angewiesen zu sein und ohne dabei die physiologischen Grenzwerte zu überschreiten. Wegen dieser Eigenschaften wird die pMRT heutzutage vielfach in der klinischen Routine eingesetzt. Dabei wächst die Zahl der klinischen MR Anwendungen, welche mittels paralleler Bildgebung beschleunigt werden. Neben dieser Entwicklung ist heutzutage aber auch eine zunehmende Kritik am Einsatz der parallelen Bildgebung bei bestimmten Applikationen festzustellen. Ein Hauptgrund dafür ist der intrinsische Verlust an Signal-Rausch-Verhältnis durch die beschleunigte Akquisition. Es gibt weitere Effekte, welche die Bildqualität vermindern können. Durch unvermeidbare Ungenauigkeiten bei den Verfahren der pMRT kann es zu lokalen und zu globalen Fehlern in den rekonstruierten Bildern kommen. Die lokalen Fehler sind als Rauschverstärkung sichtbar, wohingegen die globalen Fehler zu so genannten Faltungsartefakten im Bild führen. Das Auftreten und die Stärke dieser Störeffekte hängen von unterschiedlichen Parametern ab. Im Allgemeinen ist es nicht möglich alle Abhängigkeiten für jede Applikation gleichzeitig zu optimieren. Der Einsatz der parallelen Bildgebung kann zu massiven Bildartefakten führen, d.h. die parallele Bildgebung kann Fehler verstärken. Auf der anderen Seite gibt es Applikationen, wie zum Beispiel die abdominelle MR-Bildgebung oder die MR-Angiographie, bei denen die pMRT nicht zuverlässig funktioniert. Die Anwendung der pMRT verursacht also erst die Fehler. Ganz allgemein kann im klinischen Umfeld beobachtet werden, dass die anfängliche Euphorie gegenüber der parallelen Bildgebung einer gewissen Ernüchterung gewichen ist. Der Zuverlässigkeit der implementierten pMRT-Methoden gilt dabei die Hauptkritik. Des Weiteren ist es nicht gelungen, trotz großen technischen Fortschritts, die maximal zu erreichende Beschleunigung mittels paralleler Bildgebung signifikant zu erhöhen. Standard in der klinischen Routine ist immer noch ein Beschleunigungsfaktor von zwei, obwohl sich die Anzahl der unabhängigen Empfangskanäle eines MR Systems (eine Grundvoraussetzung für die Verwendung der pMRT) in den letzten Jahren um einen Faktor 3-6 erhöht hat. In dieser Arbeit wurde erstmalig gezeigt, dass es eine elegante Möglichkeit gibt, diese Probleme zu adressieren. Die Idee besteht darin, Synergieeffekte zu nutzen, die aus einer Kombination von so genannten nicht-kartesischen Abtastverfahren mit der parallelen Bildgebung entstehen. Die nicht-kartesischen Aufnahmeverfahren haben gegenüber den herkömmlichen kartesischen Verfahren einige Vorteile. Sie sind in der Regel schneller und weniger empfindlich für physiologisches Rauschen als kartesische Aufnahmeverfahren. Außerdem sind sie sehr robust gegenüber Faltungsartefakten, selbst bei starker Unterabtastung der k Raumdaten. Trotz der eben beschriebenen Vorteile finden nicht-kartesische Aufnahmeverfahren kaum Verwendung in der klinischen Routine. Ein Grund hierfür sind die komplexen Rekonstruktionsverfahren, die an Stelle der schnellen Fourier-Transformation angewendet werden müssen, um ein MR-Bild aus nicht-kartesischen Daten zu erzeugen. Ein weiterer Grund liegt darin, dass kartesische MR-Aufnahmen mittlerweile routinemäßig mit paralleler Bildgebung beschleunigt werden, wohingegen dies bei nicht-kartesischen MR-Aufnahmen wegen der langen Rekonstruktionszeiten nicht praktikabel ist. Dadurch wird der oben erwähnte Geschwindigkeitsvorteil der nicht-kartesischen Verfahren irrelevant. Durch die Entwicklung der in dieser Doktorarbeit vorgestellten Methoden konnten erstmals Rekonstruktionszeiten in der nicht-kartesischen Bildgebung erzielt werden, die vergleichbar sind mit denen in der kartesischen Bildgebung. In der vorliegenden Arbeit konnte die höhere Zuverlässigkeit dieser neuen Verfahren demonstriert werden. Des Weiteren wurde gezeigt, dass höhere Beschleunigungsfaktoren erzielt werden können als dies mit kartesischen Verfahren bisher möglich war. Diese Eigenschaften der vorgestellten Methoden bahnen den Weg für eine Implementierung solcher Verfahren an MR Geräten und damit deren Anwendung in der klinischen Routine. Letztendlich wird dies zu kürzeren Untersuchungszeiten der Patienten und zuverlässigeren Diagnosen führen.

Identiferoai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:2312
Date January 2008
CreatorsHeidemann, Robin
Source SetsUniversity of Würzburg
LanguageEnglish
Detected LanguageGerman
Typedoctoralthesis, doc-type:doctoralThesis
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0034 seconds