Return to search

Storage, Interference and Mechanical Effects of Single Photons in Coupled Optical Cavities

We study different phenomena associated with single-photon propagation in optical cavities coupled through optical fibers. We first address the issue of storing and delaying single-photon wavepackets in an array of microcavities. This has possible applications in developing reliable and efficient quantum repeaters that will be utilized

in building long distance quantum networks. Second, we investigate a Hong-Ou-Mandel (HOM) type of interference between two photons that are produced in two coupled atom-cavity systems. The HOM effect in this setup can test the degree of indistinguishability between photons when they are stored inside cavities. This part of the dissertation also includes the study of entanglement between atoms, cavities and atom-cavity systems induced by the photons. Finally, we focus on single-photon interactions with a tiny movable mirror in the context of quantum optomechanics. We investigate how the mechanical motion of the mirror leaves its imprints on the optical spectrum of the photon

This dissertation includes previously published and unpublished co-authored material. / 10000-01-01

Identiferoai:union.ndltd.org:uoregon.edu/oai:scholarsbank.uoregon.edu:1794/18525
Date17 October 2014
CreatorsMirza, Imran
ContributorsRaymer, Michael
PublisherUniversity of Oregon
Source SetsUniversity of Oregon
Languageen_US
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
RightsAll Rights Reserved.

Page generated in 0.0016 seconds