Submitted by Alice Araujo (alice.caraujo@ufpe.br) on 2018-04-23T23:42:59Z
No. of bitstreams: 1
DISSERTAÇÃO Edwin Danelle Coronel Sanches.pdf: 7893948 bytes, checksum: 06bf9f839c5aed283d85a7cffdc4f1a9 (MD5) / Made available in DSpace on 2018-04-23T23:42:59Z (GMT). No. of bitstreams: 1
DISSERTAÇÃO Edwin Danelle Coronel Sanches.pdf: 7893948 bytes, checksum: 06bf9f839c5aed283d85a7cffdc4f1a9 (MD5)
Previous issue date: 2016-04-28 / FACEPE / The control of the radiation-matter interaction, in our case of photons with quan- tum single emitters, as the nitrogen-vacancy (NV) defect in nanodiamonds, is crucial in the process of nano-devices fabrication. This is achieved taking advantage of the latest advances of the nano-optics to increase the interaction with single emitters for which ade-quate tools for precise interaction control has been developed. In this dissertation, we use a home-made inverted optical confocal microscope and coherent manipulation of spin states to study single NV defect in nanodiamonds. The NV defect in nanodiamonds presents optical properties that depend on the spin state of its optically active electrons, which makes them interesting for applications in nanomagnetometry, quantum informa- tion processing and nanobiothermometry. In particular, the negatively charged NV defect (NV-) exhibits single photon emission and long coherence times even at room tempera- ture. Furthermore, it has a paramagnetic ground state and can be optically polarized and read out, in an experimental technique known as Optically Detected Magnetic Resonance (ODMR). In this technique, the intensity of the fluorescence emitted by a nanodiamond depends on the spin configuration of the electronic ground state, from which an electronic transition is excited. In order to study these defects, nanodiamonds were deposited on a photolitographically structured antenna on a coverslip by spin coating and placed on the microscope. The microscope allows to both, the detection of the fluorescence and its exci- tation, by a CW laser emitting at 532 nm. The fluorescence emitted by the nanodiamond is centered around 650 nm with a zero phonon line at 637 nm. The collected fluores¬cence is sent to two avalanche photodiodes (APDs), that are in a configuration known as Hanbury-Brown and Twiss (HBT) interferometer. In it, we can verify whether the col- lected emission comes from an individual emitter, analyzing the second order correlation function g(2)(r): if g(2)(r) < 0.5 we have an emission from single photons generated by a single NV- defect in diamond. Working whit single emitter we could radiate a microwave field over the nanodiamond, which allows us to determine the resonance frequency for spin transitions in the ground state. At resonance one observes a drop in the fluorescence emitted by the nanodiamond. We explore the fact that the resonance frequency of the spin transition depends on the local magnetic field to measure the Zeeman effect gener- ated by the magnetic field of a permanent magnet (NdFeB). Finally, we realized coherent manipulation via an appropriate sequence of pulses of microwave and laser, observing Rabi oscillations. Thus, we can measure the inhomogeneous coherence time (T2*) given by the damping of Rabi oscillations. / O controle da interação radiação-matéria, em nosso caso de fotons com emissores quânticos individuais, como os defeitos de nitrogenio-vacancia (NV) em nanodiamantes, e crucial no processo da fabricacao de nano-dispositivos. Isto e conseguido aproveitando-se os ultimos avanços em nano-óptica para aumentar a interacao com emissores unicos, para os quais ferramentas adequadas para o controle preciso da interacao foi desenvolvido. Nesta dissertacao, descreveremos o uso de um microscopio confocal invertido e mani- pulacao coerente dos estados de spin de um defeito individual NV num nanodiamante. Os defeitos NV em nanodiamantes apresentam propriedades opticas que dependem do estado de spin dos seus eletrons opticamente ativos, o que os tornam interessantes para aplicacoes em nanomagnetometria, processamento de informaçao quantica e nanobioter- mometria. Em particular, defeitos NV negativamente carregados (NV-) exibem emissao de fótons unicos e longos tempos de coerência, mesmo a temperatura ambiente. Alem disso, tem um estado fundamental paramagnetico e o sistema pode ser opticamente pola¬rizado e lido, usando-se uma técnica experimental conhecida como Ressonância Magnetica Detectada Opticamente (ODMR). Nesta técnica, a intensidade de fluorescencia emitida pelo nanodiamante depende da configuracao de spin do estado eletrónico fundamental, a partir do qual a transicao eletrónica e excitada. Para estudar esses defeitos NV, nan- odiamantes foram depositados ao longo de uma antena, fotolitograficamente estruturada sobre um coverslip, usando spin coating e colocados sobre o microscopio. O microscopio permite a detecçao da fluorescencia do defeito e sua excitacao e feita por um laser CW emitindo em 532 nm. A fluorescencia emitida pelo nanodiamante ocorre em torno dos 650 nm com uma linha zero fonon em 637 nm. A fluo-rescencia coletada e enviada a dois foto-diodos de avalanche, que estao em configuraçao interferometrica do tipo Hanbury-Brown and Twiss (HBT). Nela, podemos garantir se a emissao coletada provem de um emissor individual, analisando a funcão de correlacão de segunda ordem (T): se g(2)(r) < 0, 5 comprovamos a emissão de fotons ónicos por um unico defeito NV- no nanodiamante. Trabalhamos entãao com um unico defeito NV- como emissor. Irradiando um campo de microondas sobre o nanodiamante, nos permite determinar a frequência de ressonância com a transicao de spin no estado fundamental, evidenciado por uma diminuto da flu- orescencia emitida pelo nanodiamante. Usamos o fato de que a frequencia de ressonancia da transiçao do spin depende do campo magnetico local para observar o efeito Zeeman gerado pelo campo magnetico de um ima (Nd-Fe-B). Finalmente, realizamos manipulacao coerente atraves de uma adequada sequencia de pulsos de microondas e laser, observando oscilações de Rabi. Assim, pudemos medir o tempo de coerência inhomogeneo (T2*) dado pelo amortecimento das oscilacões de Rabi.
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.ufpe.br:123456789/24441 |
Date | 28 April 2016 |
Creators | CORONEL SANCHEZ, Edwin Danelli |
Contributors | http://lattes.cnpq.br/0574758575822571, MENEZES, Leonardo de Souza |
Publisher | Universidade Federal de Pernambuco, Programa de Pos Graduacao em Fisica, UFPE, Brasil |
Source Sets | IBICT Brazilian ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Repositório Institucional da UFPE, instname:Universidade Federal de Pernambuco, instacron:UFPE |
Rights | Attribution-NonCommercial-NoDerivs 3.0 Brazil, http://creativecommons.org/licenses/by-nc-nd/3.0/br/, info:eu-repo/semantics/openAccess |
Page generated in 0.015 seconds