Leather wastewater is one of the most polluting industrial emissions. An in-situ, green, and innovative strategy that limits dye emissions is required to replace subsequent waste management. A novel cationic protein with a high quaternary ammonium degree was designed and synthesized. The results show that at concentrations ranging from 3 to 15 wt%, this cationic protein rapidly and completely adsorbs Direct Purple N and Acid Black 24 within 5 min. A remarkable efficiency in removing Acid Red 73, Acid Golden G, Acid Lake Blue A, Acid Green, and Acid Orange II, with >96% removal rates, was achieved. The cationic protein was most accurately represented by the pseudo-second-order kinetic model. Acid Orange II (2000 mg L-1) and 15 wt% cationic protein were used in an actual tanning process. The residual concentration of Acid Orange II in the wastewater was 23.1 mg L-1. These results reflect that the emission reduction targets have been effectively achieved.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:34411 |
Date | 05 July 2019 |
Creators | Xu, S. L., Xu, J., Lu, J. M., Li, T. D. |
Contributors | International Union of Leather Technologists and Chemists Societies |
Publisher | Verein für Gerberei-Chemie und -Technik e. V., Forschungsinstitut für Leder und Kunststoffbahnen (FILK) gGmbH |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, doc-type:conferenceObject, info:eu-repo/semantics/conferenceObject, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Relation | urn:nbn:de:bsz:14-qucosa2-340872, qucosa:34087 |
Page generated in 0.0021 seconds